

Engineering and Physical Sciences Research Council

Edinburgh - Cambridge - Sheffield

One minute madness

Posters and demos and coffee/tea downstairs in lecture room 4

Progress in Adaptation of DNNbased Acoustic Models

- 1. Pawel Swietojanski "Learning hidden unit contributions for unsupervised speaker adaptation of neural network acoustic models"
- 2. Yulan Liu/Penny Karanasou "An investigation into speaker informed DNN front-end for LVCSR"
- 3. Yulan Liu "On the relationship between speaker informed DNN training and linear DNN input normalisation"
- 4. Penny Karanasou "I-Vector estimation using informative priors for adaptation of deep neural networks"
- 5. Chunyang Wu "Multi-basis Adaptive Neural Network for Rapid Adaptation in Speech Recognition"

6. Peter Bell "The UEDIN ASR Systems for the IWSLT 2014 Evaluation"

- We entered systems for both English and German
- The highlights include:
 - $\circ~$ hybrid DNN adaptation with LHUC
 - tandem multi-level adaptive networks
 - \circ voice activity detection with an utterance duration prior
 - iterative dictionary refinement in German

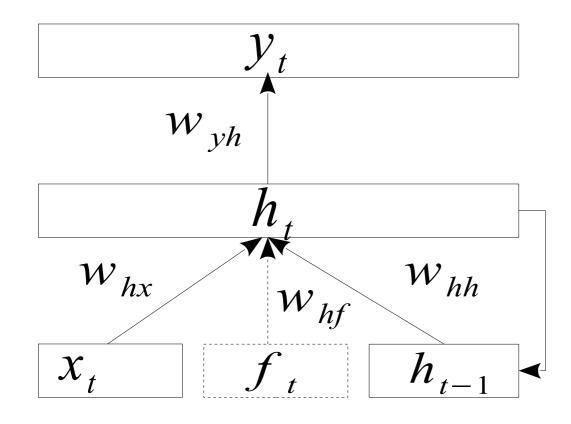
Natural

Speech

Technology

THE UNIVERSITY of EDINBURGH

7. Prosodically-enhanced Recurrent Neural Network Language Models Siva Reddy Gangireddy, Steve Renals, Yoshihiko Nankaku and Akinobu Lee



Recurrent neural network language model with a feature layer

- Prosody features
 - Word duration
 - Pause duration
 - Syllable duration

▲□▶ ▲□▶ ▲□▶ ▲□▶

- Syllable F0
- Speech Recognition
 - Switchboard
 - TED talks

I

 $\checkmark Q (~$

8.Yanmin Qian

"Noise-aware structured DNN for robust ASR"

Edinburgh - Cambridge - Sheffield

- Structured DNN
 - Each part has own function, MSE v.s. CE (MPE)
 - Different parts concatenate seamlessly
 - Decoding as normal DNN when finishing training
- Noise-aware Training
- Annealed Dropout Training

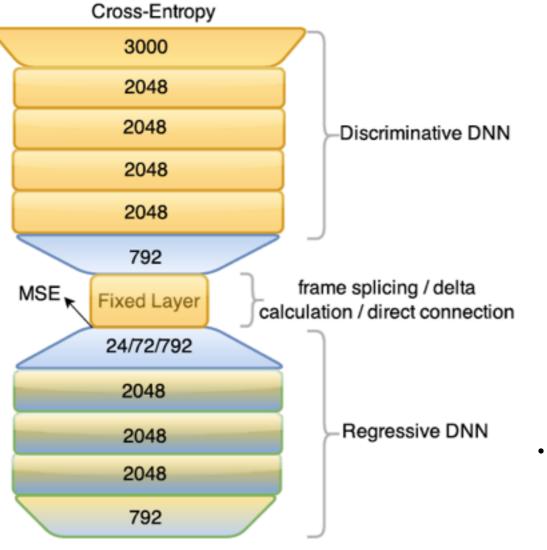


Table: WER (%) comparisons in a more realistic unseen noisy scenario.

System	SEN	2ND	AVG
			20.2
Structured DNN	14.3	23.2	18.7
+ NAT + Annealed Dropout	13.6	22.8	18.2

Table: WER (%) comparisons of various systems in the literature on Aurora 4.

System		В	С	D	AVG
Best GMM-HMM [2]	5.6	11.0	8.8	17.8	13.4
DNN NAT DP [3]	5.4	8.3	7.6	18.5	12.4
DNN PP [1]	4.5	7.5	7.4	19.3	12.3
Spectral Mask [8]	4.5	7.9	7.5	17.7	11.4
JNAT [5]	4.5	7.4	8.1	16.5	11.1
TVWR Adap [4]	4.4	7.5	7.1	15.6	10.7
AD OSN LRF [6, 7]	4.0	7.2	6.4	14.5	10.0
Structured DNN	3.8	6.5	6.3	15.6	10.1

 The proposed Structured DNN has the good generalization, and achieves the best similar published results, ~10% WER on Aurora 4, only using the Sigmoid neurons

- The model RNN encoder-decoder
 - Mapping the variable length input sequence to the output sequence
 - The encoder maps the input sequence to a fixed length vector representation
 - The decoder computes the probability of output sequence given the vector
- The LVCSR system
 - Not hybrid the outputs are words **not** HMM states
 - No pronunciation dictionary since we use word outputs
 - Not explicit alignment since we use vector representation of the whole input sequence
- The experiments 50% WER on Switchboard without LM

10.Unsupervised Domain Discovery using Latent Dirichlet Allocation

Mortaza Doulaty, Oscar Saz and Thomas Hain

- Trying to discover domains in an unsupervised manner using Latent Dirichlet Allocation in highly diverse speech data
- Trying to find the relation of latent domains with existing manually labeled domains and meta-data
- Building / adapting latent domain models

- HTK has been extended to support ANNs with DCG architectures.
- HTK-ANN provides "built-in" support to Tandem and Hybrid systems.
- State-of-the-art facilities such as ANN adaptation and sequence training are included.
- HTK-ANN is compatible with most previous HTK functions.
- HTK-ANN is going to be included as part of HTK 3.5 coming in later in 2015.
- NST MGB challenge development system performance along with WSJ0 demo systems are provided.

UNIVERSITY OF CAMBRIDGE

12. Liang Lu / Pawel Swietojanski / Peter Bell "Kaldi extensions at Edinburgh"

Two Kaldi recipes

- The AMI recipe in Kaldi repository now
 - Individual headset microphones
 - Multiple distant microphones
 - Single distant microphones
- The MGB challenge recipe

Interface beween Kaldi and CNTK

- Currently, CNTK is more flexible in training neural networks
- The interface support reading Kaldi features and labels
- Working on sequence training of CNTK using Kaldi lattices

Inserting Filled Pauses and Discourse Markers for Disfluent Speech Synthesis

M. Tomalin, R. Dall, M. Wester, X. Liu, B. Byrne, & S. King

Speech disfluencies (DISs) are pervasive in natural conversational speech

I'm getting a bit uh specific here

DISs automatically inserted into fluent speech synthesis input text.

Four DISs modelled overtly:

13.

- 2 Filled Pauses: UH and UM
- 2 Discourse Markers: I MEAN and YOU KNOW

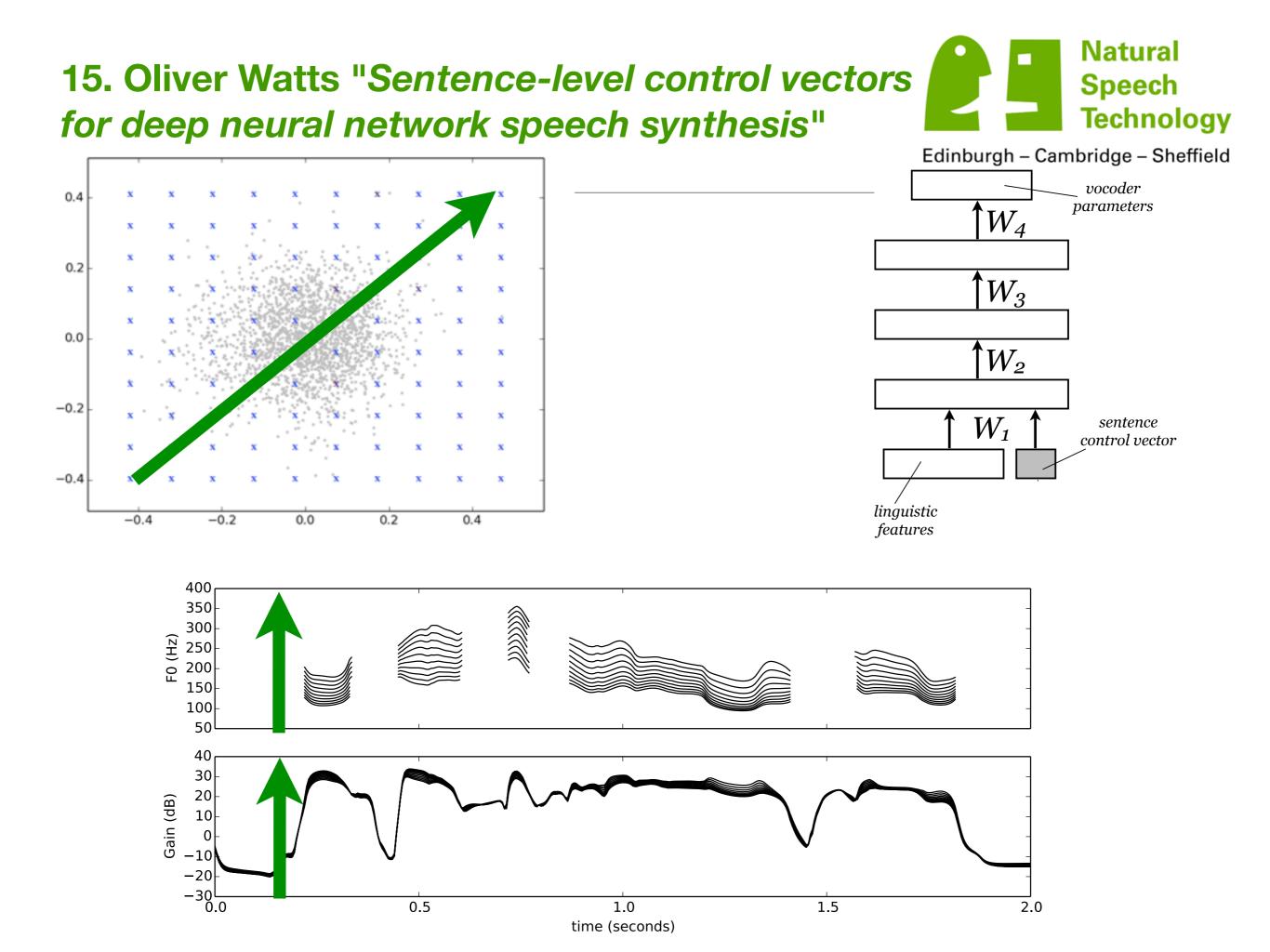
Overview of DIS-insertion system:

- Robust lattice-based rescoring framework
- Ngram and f-RNNLM built
- Initial lattices created with each DIS accessible from each word node
- □ Lattices expanded and rescored using Ngram, f-RNNLM, and Ngram + f-RNNLM
- □ Disfluency Parameter (DP) determines degree of disfluency in the output
- Disfluent output generated for specified DP
- Performance assessed using Precision, Recall, and F-score metrics

14. Mirjam Wester / Gustav Henter "Subjective Evaluation of TTS"

/m/	Mary came home
/p/	The puppy is playing with a rope
/b/	Bob is a baby boy
197	The phone fell off the shelf
INI	Dave is driving a van
/th/ = /6/	This hand is cleaner than the other
/n/	Neil saw a robin in a nest
N	A ball is like a balloon
N	Tim is putting on a hat
/d/	Daddy mended a door
151	I saw Sam sitting on a bus
121	The zebra was at the zoo
/shi = /s/	Sean is washing a dirty dish
/ch/ =/t]/	Charlie's watching a football match
ly =/dz/	John's got a magic badge
141 + 14	The young chicks are yellow
/ng/ = /ŋ/	The bell's ringing
/k/	Karen is making a cake
191	Gary's got a bag of lego
/h/	Hannah hurt her hand

STLP - ARL: 5	RQ			
Tial 1 of 1 Signal	2			
100 Docellent Good Fol Pites 20 Bed	4 4 4	* * *		
Bad 0	• • • 100 100 100 A B C			
Position 4		. a.oo		
Stat •		100		
Step 🔳		+ 200		



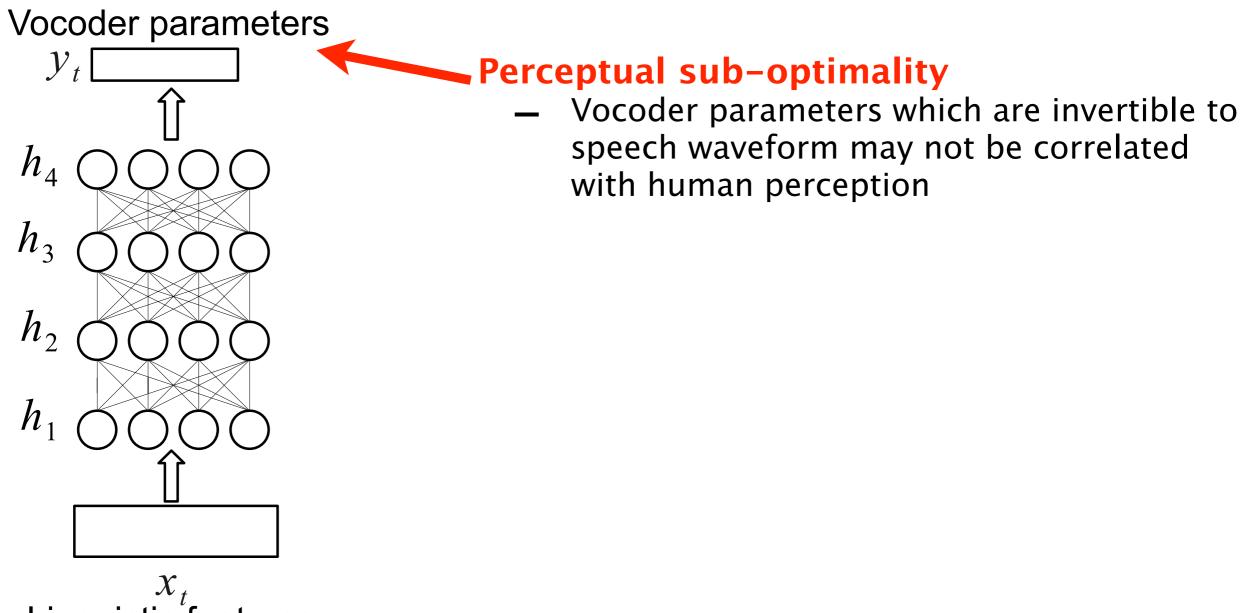
16.Tom Merritt "Deep neural network context embeddings for model selection in rich-context HMM synthesis"

- Previous investigations highlighted:
 - Across-linguistic-context averaging harmful
 - Within-linguistic-context averaging much better
- Rich-context synthesis from literature aims to fix this issue
 - Models within-linguistic-context
 - However this uses original across-context computed leaf node as a reference for rich-context model selection
- This investigation uses DNN bottleneck features to select rich context models

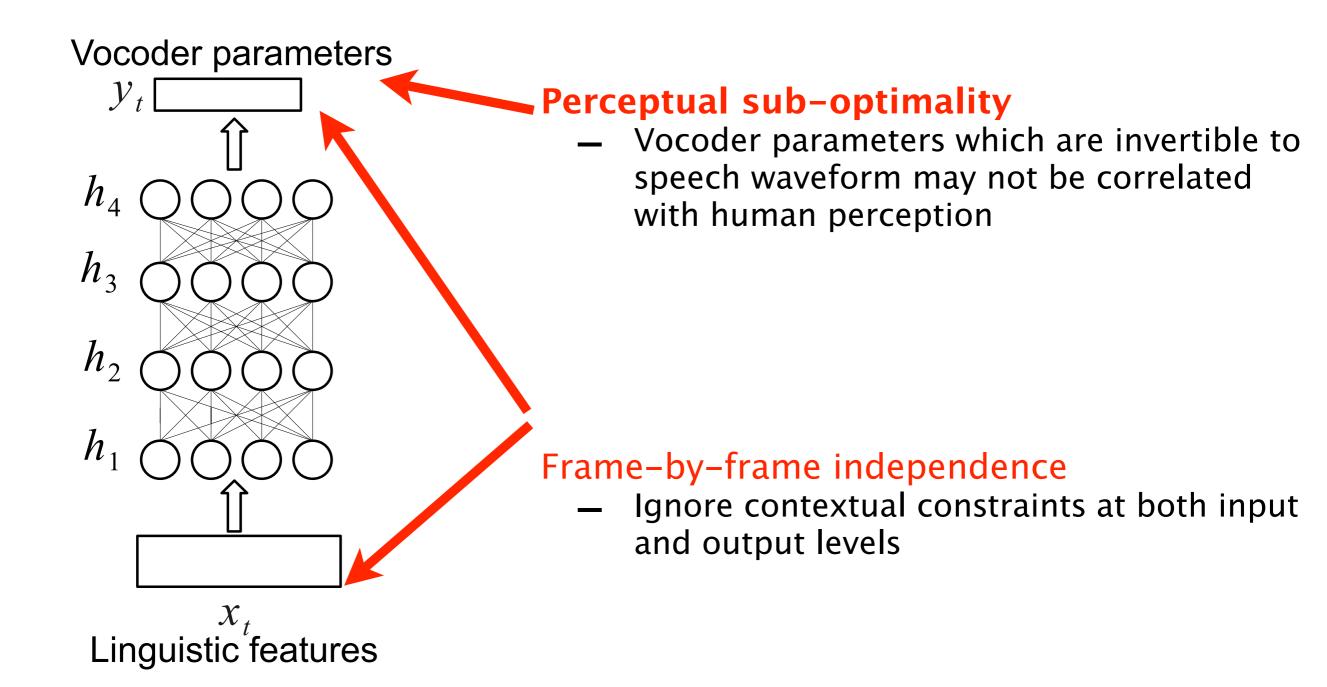
Vocoder parameters \mathcal{Y}_t h_4 h_3 h_2 h_1

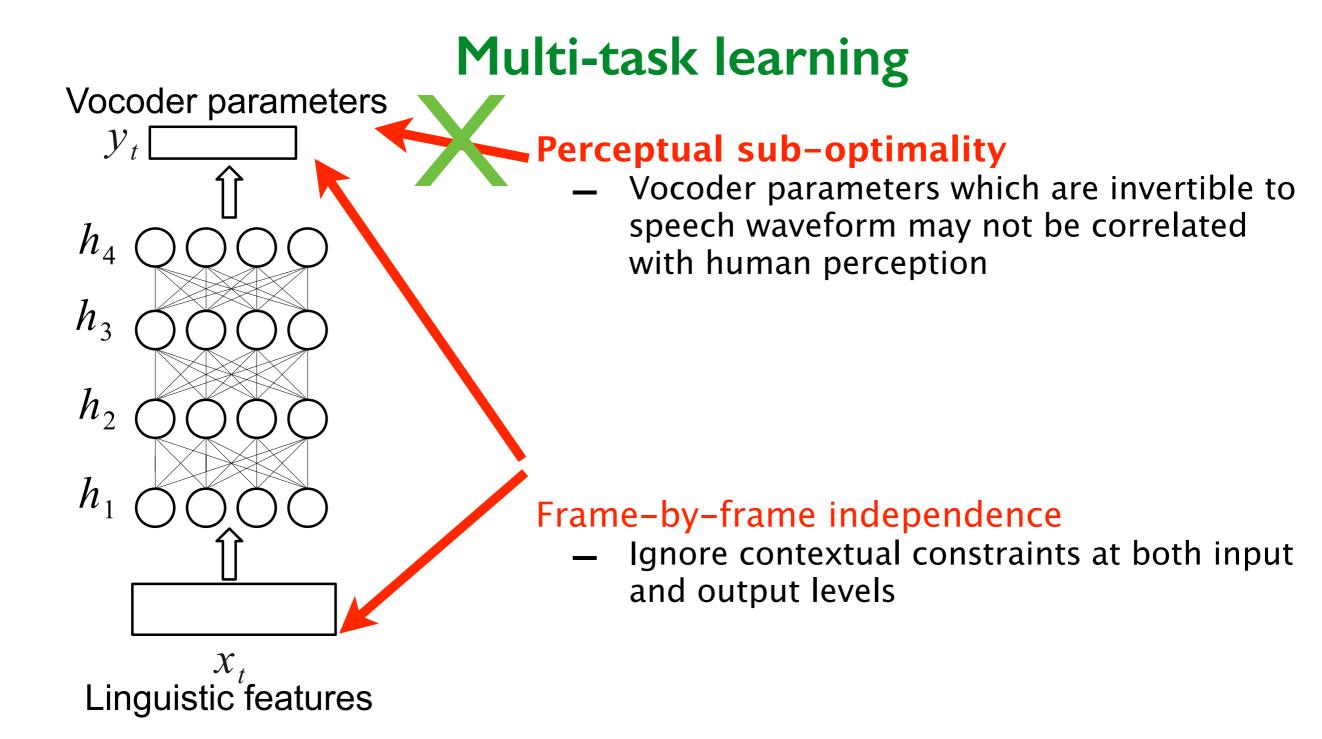
 X_t Linguistic features

Edinburgh - Cambridge - Sheffield

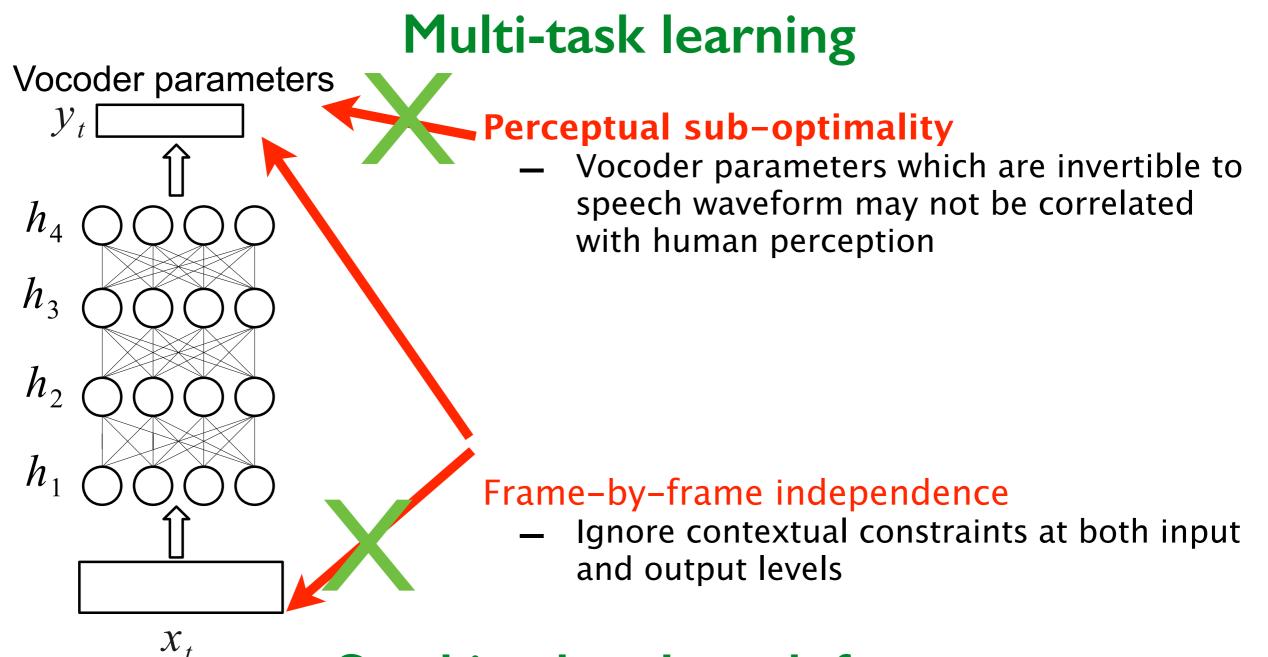


Linguistic features

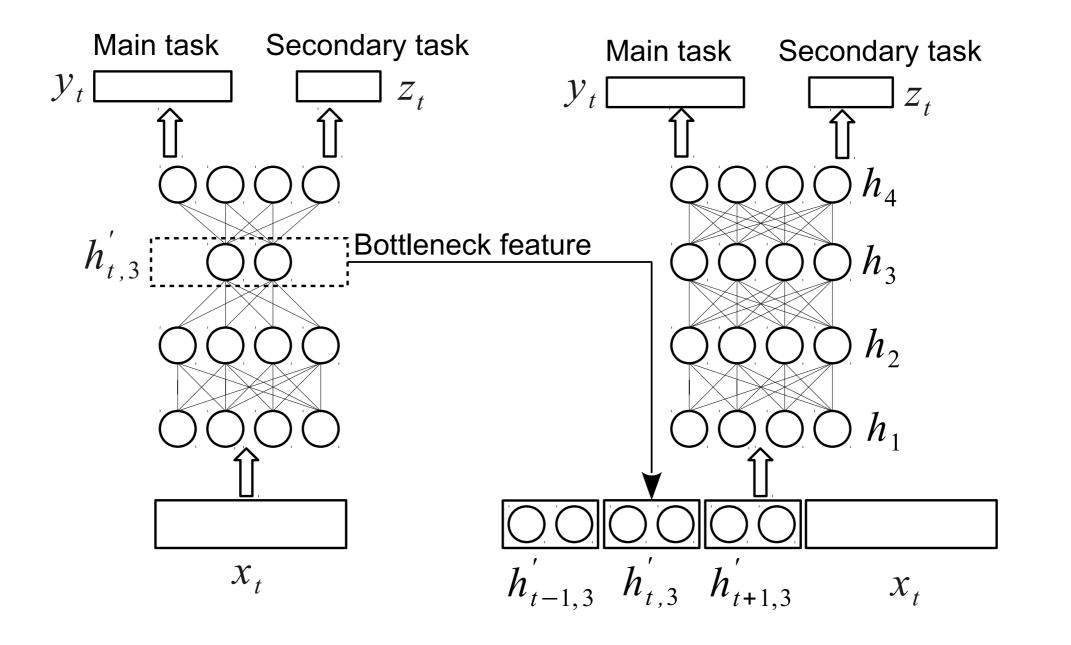




Edinburgh - Cambridge - Sheffield



Linguistic features Stacking bottleneck features



18. Pierre Lanchantin "Details of the MGB Challenge data preparation"

- Which data/metadata were provided to MGB challengers and how were they prepared from raw material (subtitles) ?
- Examples of training data selection using the provided metadata
- **Demo** of subtitles re-alignment for diverse tv-shows

19. Pierre Lanchantin "Reconstructing voices within the Multiple-average-voice-model"

- Personalisation of Voice output communication aids
- Voice reconstruction: build voices from disordered speech
- HMM-based speech synthesis approach: Adaptation+substitution of deteriorated components (risk of identity loss)
- We show that the Multiple AVM framework is well-suited to the Voice reconstruction task
 - complexity: requires a small quantity of data
 - flexibility: interpolation of component mean vectors can be performed in a "clean" eigenspace and interpolation weights can be fine-tuned by a practician
- We illustrate our points with **subjective assessment** of the reconstructed voice

Image: Second state Image: Second state

20. Phil Green "Browsing Oral History"

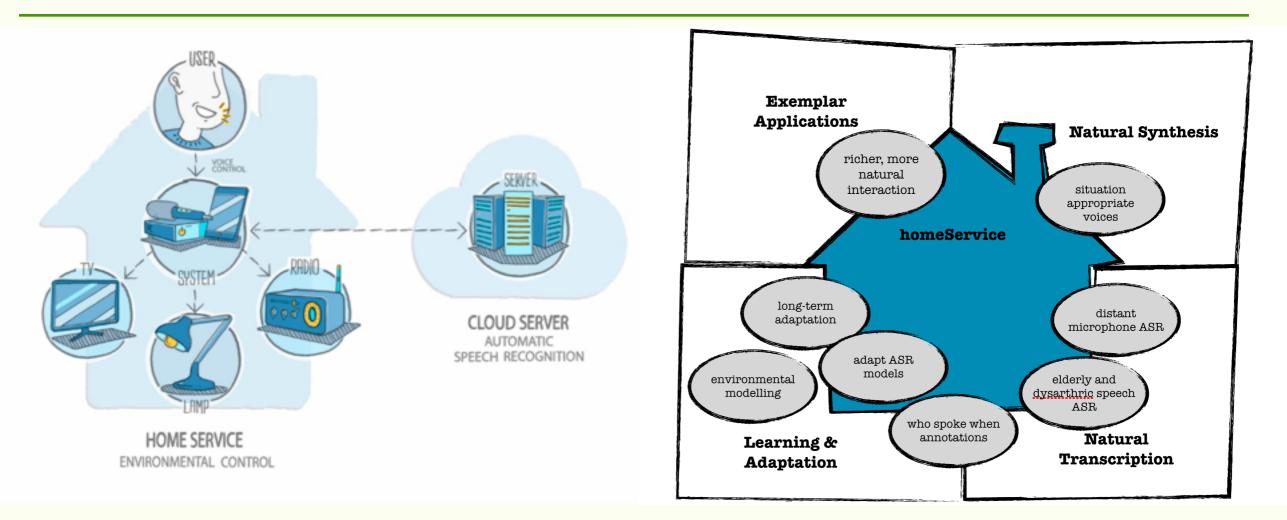
- Recorded memories, reminiscences
- Long Interviews, transcriptions are rare
- Topic-focussed (but topic may be very wide)
- Many collections, no central database.. 1000s of hour
- Usage limited by retrieval problems...
- Search the ASR transcription, play back the audio.

Web site demonstrator: 'Duty Calls' project: Brodsworth Hall

Edinburgh - Cambridge - Sheffield

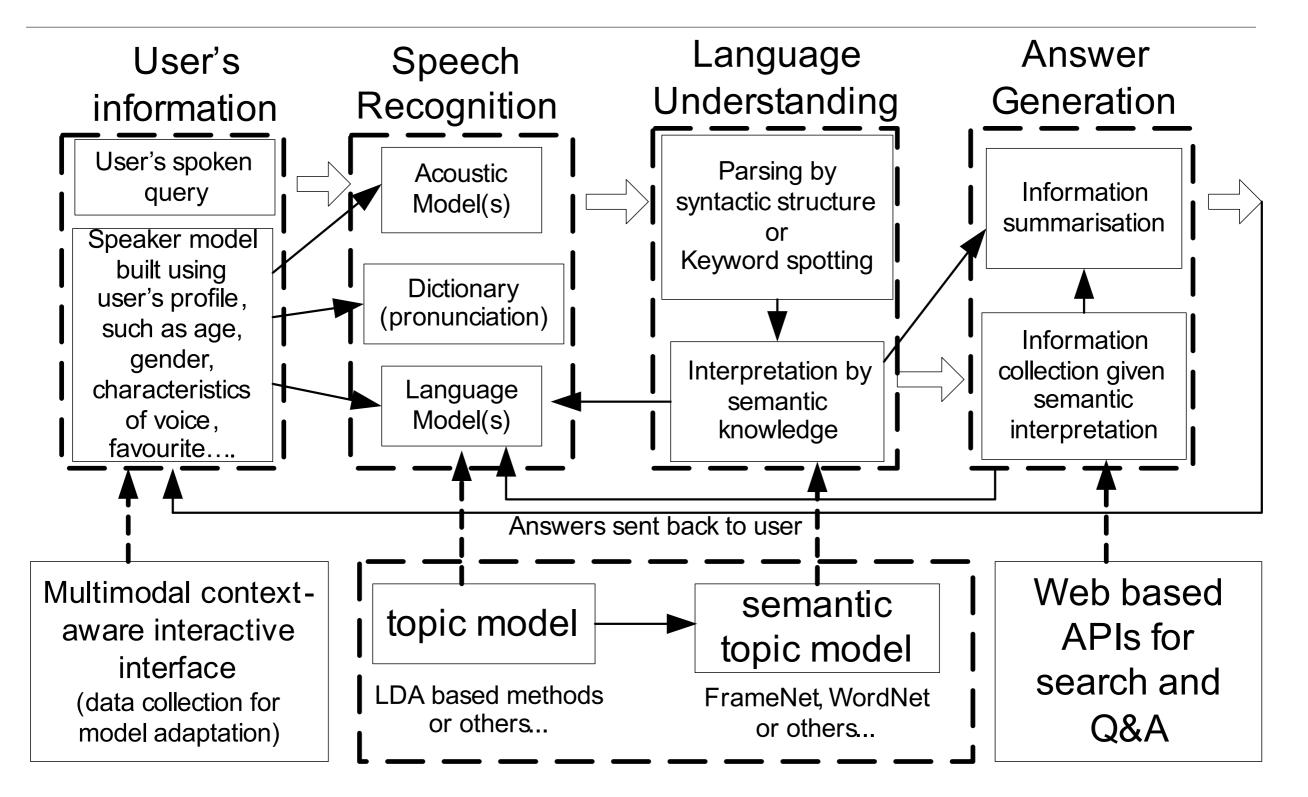
21. Automatic speech recognition for people with disordered speech: results from online and offline experiments

Mauro Nicolao, Heidi Christensen, Salil Deena, Stuart Cunningham, Phil Green, Thomas Hain



http://www.natural-speech-technology.org/homeService

22. Qiang Huang "User-dependent interactive system"



23. Peter Bell "GlobalVox Demo"

We demonstrate a prototype system for analysing and translating news stories, developed as part of the BBC's 2014 *newsHACK*

