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Overview

• Challenges of adaptation of DNN acoustic models

• Classification and comparison of adaptation techniques

• NST work for ASR and TTS
◦ Informative priors for i-vectors estimation (P. Karanasou)
◦ Speaker informed training (Y. Liu)
◦ Adapting Hidden Units of DNNs (P. Swietojanski)
◦ Multi-basis Adaptive DNNs (C. Wu)
◦ Adaptation for TTS (Z. Wu)



Adaptation of DNN acoustic models

• Increasing interest in adaptation of DNN acoustic models

• Cases to handle: multiple speakers, different environments, channel
variation...

• Challenges to address
◦ Large number of parameters requires large amount of adaptation data

(overfitting problem) [Liao, ICASSP2013]
◦ Difficult to find structure in weights of DNN and apply transforms as

in GMM-HMMs [Liao, ICASSP2013], [Seide, ASRU2011]
◦ Need for small size of transforms: quick adaptation and small storage

requirements
◦ Joint optimisation of DNN and adaptation parameters



A classification of adaptation techniques of DNN
acoustic models

• Transformation of the acoustic features

• Speaker information added as auxiliary input features

• Model-based adaptation

• Modification of the DNN structure



Comparison of adaptation methods

Transformation of acoustic features

• Speaker transformation at feature level, such as CMLLR [Gales,
1998]

• Transformation learned independently of DNN - no need for
back-propagation

• Need an HMM-GMM system to generate the SAT features
• Supervised adaptation: Need to generate transcriptions if they are

not available

Speaker auxiliary input features

• Add speaker information to DNN input
• Small number of parameters to adapt
• Can be applied to short segments for low-latency adaptation
• Independent of DNN structure
• Not jointly estimated with DNN parameters
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Comparison of adaptation methods

Model-based adaptation

• ”Tune” the DNN parameters to particular speakers

• Optimize all DNN parameters jointly and discriminatively

• Large number of parameters to estimate with back-propagation

Modification of DNN structure

• Introduce meaningful structures in DNN for adaptation

• Small number of parameters to adapt

• Two passes of DNN training needed for adaptation (first SI, then
adapted DNN)

• Usually expands the DNN structure and introduces more
parameters to DNN training
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Speaker auxiliary input features

• Append speaker informed features to the input of the network

• Examples: i-vectors [Saon, ASRU2013], speaker codes [Bridle,
NIPS1990] [Abdel-Hamid, ICASSP2013] , speaker separation
bottleneck features (SSBN) [Liu, ICASSP2014]

• Speaker and factorised (speaker/environment) i-vectors added to
the input [Karanasou, IS2014]

• Informative priors introduced to estimation of speaker i-vectors
[Karanasou, submitted to IS2015]

• Establish a common theoretical framework for speaker informed
DNN training methods; investigate its relationship to DNN
parameters as well as input features [Liu, ICASSP15],[Liu,
submitted to IS15]



I-Vector Estimation Using Informative Priors for Adaptation of DNNs
Penny Karanasou, Mark Gales, Phil Woodland



Adaptation of a hybrid DNN-HMM system with
speaker i-vectors
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• i-vectors: low-dimensional
representation of speaker
space

• A small number of parameters
to estimate => can be used
with very little data

• Prior needed to improve
robustness of i-vector
estimates with limited data



Prior-enhanced i-vectors

• Count-smoothing prior: Interpolate basic accumulates with priors
estimated on the training data

• ID prior : i-vector ∼ N (0, I)

• SI prior : λ
(s)
SI = G−1λ(SI)kλ(SI)



ASR performance on US BN-E corpuss

Table : Hybrid decoding results for DNNs with SI input features (WER %)

System dev03-manual

Baseline 12.7

+iv-utter 11.5
+iv-utter-Stdprior 14.2
+iv-utter-SIprior 11.5

+iv-utter-Stdprior-retrain 11.6
+iv-utter-SIprior-trn-retrain 11.1

• “+iv-utter”: append utterance-level test i-vectors to DNN input
• Compare “+iv-utter-Stdprior”, “+iv-utter-Stdprior-retrain”: Std

normal prior sensitive to mismatch of trn/test i-vector spaces
• Best performance with utter-level test i-vectors with informative

prior (“+iv-utter-SIprior-retrain”)



Speaker Informed DNN Training
Yulan Liu, Thomas Hain



Speaker Informed DNN & Bias Adaptation

• Speaker informed DNN training can be equivalent to bias
adaptation at the input layer
◦ Particularly, using speaker based auxiliary codes is equivalent to using

speaker dependent biases.

• The design of auxiliary codes influences the adaptation
performance
◦ Particularly the dimension, discriminability and stability of the

auxiliary codes;
◦ With a proper design, hand-crafted codes can achieve equivalent

performance with i-vectors.



Speaker Informed DNN & Input Normalisation

• Speaker informed DNN training can be equivalent to speaker based
additive DNN input normalisation
◦ Factorise speaker dependent biases linearly but in different structures;
◦ Performance of two methods can be equivalent, while combining them

does not improve further;
◦ Additive input normalisation over log filter bank features enables an

interpretation of speaker dependent scaling over spectrum.

• Other normalisation methods
◦ Speaker based multiplicative input normalisation is also effective,

however additive normalisation wins out;
◦ Combining additive and multiplicative normalisations brings marginal

further improvement;
◦ Joint optimisation with DNN parameters is crucial in input

normalisation.



Model-based adaptation

• Find a way to ”tune” the DNN parameters to particular speakers

• Factorise hidden layer(s) and update smaller matrices only [Xue,
IS2014] or update output layer only [Yao, SLT2012]

• Reguralise any type of model with KL-like criterion so the adapted
model does not diverge too much from its unadapted version [Yu,
ICASSP2013]

• Scale hidden units using speaker-dependent data (Learning Hidden
Units Contributions -LHUC) [Swietojanski, SLT2014]

• Hidden units interpolation within pooling regions [Swietojanski,
ICASSP 2015]



Adapting Hidden Units of Neural Networks for Acoustic Modelling
Pawel Swietojanski, Steve Renals



Learning Hidden Unit Contributions (LHUC)

• Each hidden unit states some hypothesis Hi (defined by its
parametrisation θi ) about its inputs (data) x, i.e. for the ith
hidden unit and sigmoid activation (φ) one can write:

hl+1
i = φ(xW + b) = P(Hi |x; θi )

• The set of hypotheses in the model is structured (into layers) and
jointly optimised during training (but do their relative importance
remains optimal for unseen data?)

• LHUC re-weights the contributions of particular hidden units using
adaptation data for the mth speaker, as follows:

hl+1
i = a(rmi ) ◦ φ(xW + b)



Differentiable pooling (DiffP)

• Like LHUC, but performs hidden units interpolation within pooling
regions (instead of scaling)

hl+1
k =

∑
i∈Gk

um,ki hli

• where um,k is some non-linear function of hli and its
parametrisation depends on speaker m and kth pooling unit,

• At test time, one refines only pooling parameters of um,k in
per-speaker manner

• Experimented with two forms of pooling, linear weighting with
pooling weights defined by Gaussian kernels [Swietojanski,
ICASSP2015] and Lp-norm (with learnable order p) [Under
preparation].



Results - Word Error Rates (%)

Observed around 5-20% relative improvements across various
corpora. Methods were found to be complementary to each
other as well as to CMLLR.
Example numbers:

• LHUC
◦ TED (tst2010): 14.9 → 12.9
◦ Switchboard (eval2000): 22.1 → 21.2
◦ Aurora4 (multi-condition): 11.8 → 9.5 (or 10.8 → 8.6 with dropout)

• DiffP
◦ TED (tst2010): 14.9 → 12.9
◦ Switchboard (eval2000): 21.3 → 20.3

• LHUC + DiffP
◦ TED (tst2010): 14.9 → 12.5



Modification of the DNN structure

• Introduce meaningful structures in DNN for adaptation, which are
not explicit and hard to figure out in traditional NN parameters

• Additional linear layers as speaker-dependent transforms prior to
the input layer [Neto, IS1995], to a hidden layer [Gemello,
SpeechComm2007] or to the output layer [Li, IS15]

• Set of sub-networks structure (called bases) inspired by CAT [Wu,
ICASSP2015] [Tan, ICASSP2015]. Adapt the DNN by learning the
interpolation weights of the bases for each speaker

• Convolutional layers with frequency pooling [Abdel-Hamid,
ICASSP2012]



Multi-basis Adaptive Neural Network for Rapid Adaptation in Speech
Recognition

Chunyang Wu, Mark Gales



Multi-basis Adaptive Neural Network

Basis 1 Basis 2 . . . Basis K

Combination

Context-Dependent

Input Feature

• Introduce multiple bases

• Shared common input and
output layers (Optionally
common hidden layers)

• Bases are combined via
interpolation

p(y = i |x) =
exp (

∑
k λkzi (x))∑

j exp (
∑

k λkzj(x))

• λ convex optimization on the
cross-entropy criterion



Extension with Multi-Interpolation Classes

• Introduce phonetic knowledge while adapting the acoustic space
• Each output (i-th CD-state) is given via interpolation on its

corresponding class c(i) interpolation weights

p(y = i |x) =
exp

(∑
k λ

c(i)
k zi (x)

)
∑

j exp
(∑

k λ
c(j)
k zj(x)

)



Speaker adaptation of DNN acoustic models for TTS
Zhizheng Wu, Simon King



Speaker adaptation for speech synthesis

• Create a new voice using a small amount of target speech and
average voice model

• Adaptability is one of the major advantages of statistical
parametric speech synthesis over unit selection

• Significant amount of work has been done in HMM-based speech
synthesis

• Will DNN models achieve better adaptation performance than
HMM?



DNN-based speech synthesis

• Map linguistic features to vocoder parameters



Speaker adaptation for DNN synthesis

• Speaker adaptation can be done at three levels



Speaker adaptation for DNN synthesis

• Input level: i-vector

• Model level: LHUC

• Output level: Feature transformation



Speaker adaptation for DNN-based speech synthesis

• Naturalness: 10 utterances adaptation



Speaker adaptation for DNN-based speech synthesis

• Similarity: 10 utterances adaptation



Speaker adaptation: DNN vs HMM

• Preference test
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Thank you!


