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Overview

e Challenges of adaptation of DNN acoustic models

e (Classification and comparison of adaptation techniques

e NST work for ASR and TTS

Informative priors for i-vectors estimation (P. Karanasou)
Speaker informed training (Y. Liu)

Adapting Hidden Units of DNNs (P. Swietojanski)
Multi-basis Adaptive DNNs (C. Wu)

Adaptation for TTS (Z. Wu)
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Adaptation of DNN acoustic models

e Increasing interest in adaptation of DNN acoustic models

e Cases to handle: multiple speakers, different environments, channel
variation...
e Challenges to address
o Large number of parameters requires large amount of adaptation data
(overfitting problem) [Liao, ICASSP2013]
o Difficult to find structure in weights of DNN and apply transforms as
in GMM-HMM s [Liao, ICASSP2013], [Seide, ASRU2011]
o Need for small size of transforms: quick adaptation and small storage
requirements
o Joint optimisation of DNN and adaptation parameters



A classification of adaptation techniques of DNN
acoustic models

e Transformation of the acoustic features

e Speaker information added as auxiliary input features
Model-based adaptation

Modification of the DNN structure



Comparison of adaptation methods

Transformation of acoustic features

e Speaker transformation at feature level, such as CMLLR [Gales,
1998]

e Transformation learned independently of DNN - no need for
back-propagation

e Need an HMM-GMM system to generate the SAT features

e Supervised adaptation: Need to generate transcriptions if they are
not available



Comparison of adaptation methods

Transformation of acoustic features

e Speaker transformation at feature level, such as CMLLR [Gales,
1998]

e Transformation learned independently of DNN - no need for
back-propagation

e Need an HMM-GMM system to generate the SAT features

e Supervised adaptation: Need to generate transcriptions if they are
not available

Speaker auxiliary input features

Add speaker information to DNN input

Small number of parameters to adapt

Can be applied to short segments for low-latency adaptation
Independent of DNN structure

e Not jointly estimated with DNN parameters



Comparison of adaptation methods

Model-based adaptation
e "Tune" the DNN parameters to particular speakers
e Optimize all DNN parameters jointly and discriminatively

e Large number of parameters to estimate with back-propagation



Comparison of adaptation methods

Model-based adaptation

e "Tune" the DNN parameters to particular speakers

e Optimize all DNN parameters jointly and discriminatively

e Large number of parameters to estimate with back-propagation

Modification of DNN structure

e Introduce meaningful structures in DNN for adaptation

Small number of parameters to adapt

e Two passes of DNN training needed for adaptation (first Sl, then
adapted DNN)

Usually expands the DNN structure and introduces more
parameters to DNN training



Speaker auxiliary input features

e Append speaker informed features to the input of the network

e Examples: i-vectors [Saon, ASRU2013], speaker codes [Bridle,
NIPS1990] [Abdel-Hamid, ICASSP2013] , speaker separation
bottleneck features (SSBN) [Liu, ICASSP2014]

e Speaker and factorised (speaker/environment) i-vectors added to
the input [Karanasou, 1S2014]

e Informative priors introduced to estimation of speaker i-vectors
[Karanasou, submitted to 1S2015]

e Establish a common theoretical framework for speaker informed
DNN training methods; investigate its relationship to DNN
parameters as well as input features [Liu, ICASSP15],[Liu,
submitted to 1S15]



I-Vector Estimation Using Informative Priors for Adaptation of DNNs
Penny Karanasou, Mark Gales, Phil Woodland



Adaptation of a hybrid DNN-HMM system with
speaker i-vectors

e j-vectors: low-dimensional
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Prior-enhanced i-vectors

e Count-smoothing prior: Interpolate basic accumulates with priors
estimated on the training data

e ID prior : i-vector ~ A(0,1)

e S| prior : )\gsl) = G;(lsl)k)\(SI)

fprior : slighty shrinks the spk space

+Std normal prior: moving the spk space towards
the zero mean value and distorting its variance




ASR performance on US BN-E corpus

Table : Hybrid decoding results for DNNs with Sl input features (WER %)

‘ System ‘ dev03-manual ‘
Baseline 12.7
+iv-utter 11.5
+iv-utter-Stdprior 14.2
—+iv-utter-Slprior 115
—+iv-utter-Stdprior-retrain 11.6
+iv-utter-Slprior-trn-retrain 11.1

e “+iv-utter”: append utterance-level test i-vectors to DNN input
e Compare “+iv-utter-Stdprior”, “4iv-utter-Stdprior-retrain”: Std
normal prior sensitive to mismatch of trn/test i-vector spaces
e Best performance with utter-level test i-vectors with informative

prior (“+iv-utter-Slprior-retrain”)



Speaker Informed DNN Training
Yulan Liu, Thomas Hain
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Speaker Informed DNN & Bias Adaptation

e Speaker informed DNN training can be equivalent to bias
adaptation at the input layer
o Particularly, using speaker based auxiliary codes is equivalent to using
speaker dependent biases.
e The design of auxiliary codes influences the adaptation
performance
o Particularly the dimension, discriminability and stability of the
auxiliary codes;
o With a proper design, hand-crafted codes can achieve equivalent
performance with i-vectors.



Speaker Informed DNN & Input Normalisation

e Speaker informed DNN training can be equivalent to speaker based
additive DNN input normalisation
o Factorise speaker dependent biases linearly but in different structures;
o Performance of two methods can be equivalent, while combining them
does not improve further;
o Additive input normalisation over log filter bank features enables an
interpretation of speaker dependent scaling over spectrum.

e Other normalisation methods
o Speaker based multiplicative input normalisation is also effective,
however additive normalisation wins out;
o Combining additive and multiplicative normalisations brings marginal
further improvement;
o Joint optimisation with DNN parameters is crucial in input
normalisation.



Model-based adaptation

e Find a way to "tune” the DNN parameters to particular speakers
e Factorise hidden layer(s) and update smaller matrices only [Xue,
IS2014] or update output layer only [Yao, SLT2012]

e Reguralise any type of model with KL-like criterion so the adapted

model does not diverge too much from its unadapted version [Yu,
ICASSP2013]

e Scale hidden units using speaker-dependent data (Learning Hidden
Units Contributions -LHUC) [Swietojanski, SLT2014]

¢ Hidden units interpolation within pooling regions [Swietojanski,
ICASSP 2015]



Adapting Hidden Units of Neural Networks for Acoustic Modelling
Pawel Swietojanski, Steve Renals



Learning Hidden Unit Contributions (LHUC)

e Each hidden unit states some hypothesis ; (defined by its
parametrisation 6;) about its inputs (data) x, i.e. for the ith
hidden unit and sigmoid activation (¢) one can write:

At = ¢(xW + b) = P(H,i|x; 0;)

e The set of hypotheses in the model is structured (into layers) and
jointly optimised during training (but do their relative importance
remains optimal for unseen data?)

e LHUC re-weights the contributions of particular hidden units using
adaptation data for the mth speaker, as follows:

AT = a(r™) o ¢(XW + b)



Differentiable pooling (DiffP)

e Like LHUC, but performs hidden units interpolation within pooling
regions (instead of scaling)

I+1 _ myk |
AR
i€ Gy
™.k is some non-linear function of h,l and its
parametrisation depends on speaker m and kth pooling unit,

e where u

e At test time, one refines only pooling parameters of u™¥ in
per-speaker manner

e Experimented with two forms of pooling, linear weighting with
pooling weights defined by Gaussian kernels [Swietojanski,
ICASSP2015] and Lp-norm (with learnable order p) [Under
preparation].



Results - Word Error Rates (%)

Observed around 5-20% relative improvements across various
corpora. Methods were found to be complementary to each
other as well as to CMLLR.
Example numbers:
e LHUC

o TED (tst2010): 14.9 — 12.9

o Switchboard (eval2000): 22.1 — 21.2

o Aurora4 (multi-condition): 11.8 — 9.5 (or 10.8 — 8.6 with dropout)
o DiffP

o TED (tst2010): 14.9 — 12.9

o Switchboard (eval2000): 21.3 — 20.3
e LHUC + DiffP

o TED (tst2010): 14.9 — 125



Modification of the DNN structure

e Introduce meaningful structures in DNN for adaptation, which are
not explicit and hard to figure out in traditional NN parameters

e Additional linear layers as speaker-dependent transforms prior to
the input layer [Neto, 1S1995], to a hidden layer [Gemello,
SpeechComm?2007] or to the output layer [Li, IS15]

e Set of sub-networks structure (called bases) inspired by CAT [Wu,
ICASSP2015] [Tan, ICASSP2015]. Adapt the DNN by learning the
interpolation weights of the bases for each speaker

e Convolutional layers with frequency pooling [Abdel-Hamid,
ICASSP2012]



Multi-basis Adaptive Neural Network for Rapid Adaptation in Speech
Recognition
Chunyang Wu, Mark Gales



Multi-basis Adaptive Neural Network

Context-Dependent
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Input Feature

Introduce multiple bases

Shared common input and
output layers (Optionally
common hidden layers)

Bases are combined via
interpolation
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A convex optimization on the
cross-entropy criterion




Extension with Multi-Interpolation Classes

e Introduce phonetic knowledge while adapting the acoustic space
e Each output (i-th CD-state) is given via interpolation on its
corresponding class c(i) interpolation weights

exp (Zk /\i(i)z;(x))
e (S 5(x)

ply =ilx) =

State RegTree

Context-Depende!

Class M




Speaker adaptation of DNN acoustic models for TTS
Zhizheng Wu, Simon King



Speaker adaptation for speech synthesis

e Create a new voice using a small amount of target speech and
average voice model

e Adaptability is one of the major advantages of statistical
parametric speech synthesis over unit selection

e Significant amount of work has been done in HMM-based speech
synthesis

e Will DNN models achieve better adaptation performance than
HMM?



DNN-based speech synthesis

e Map linguistic features to vocoder parameters

Vocoder parameters

xt
Linguistic features




Speaker adaptation for DNN synthesis

e Speaker adaptation can be done at three levels

Y
Gender code




Speaker adaptation for DNN synthesis

e Input level: i-vector
e Model level: LHUC

e Output level: Feature transformation



e Naturalness: 10 utterances adaptation

Speaker adaptation for DNN-based speech synthesis
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Speaker adaptation for DNN-based speech synthesis

e Similarity: 10 utterances adaptation
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Speaker adaptation: DNN vs HMM

o Preference test

Naturalness:10 DNN
Naturalness:100 DNN
Similarity:10 DNN
Similarity:100 DNN

0 éo 40 60 80 100

Preference score (%)



Thank you!



