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Introduction
In this paper, we study using RNN encoder-decoder for end-to-end
speech recognition which replaces HMMs.

• Introduction to RNN encoder-decoder

• Model architecture and training details

• Experiments on switchboard dataset
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1. The objective function - The RNN encoder-decoder is a neural
network model that directly computes the conditional probability of
the output sequence given the input sequence

P (y1, . . . , yO|x1, . . . ,xT ) =

O∏
o=1

P (yo|y1, . . . , yo−1, co).

where co is a fixed length hidden representation of the input sequence
obtained from the encoder, to which we refer as context vector.

2. The decoder - The posterior probability of yo is computed as

P (yo|y1, . . . , yo−1, co) = g(yo−1, so, co) (1)

where so denotes the output of a recurrent hidden layer, and g(·) is a
softmax function in the output layer.

3. The encoder - The encoder maps the input sequence into a fixed
length of vector representation using, e.g. bi-directional RNN

co =
∑
t

αotht (2)

where αot ∈ [0, 1] and
∑

t αot = 1. The weights αot is obtained by the
alignment model

αot =
exp(eot)∑
t′ exp(eot′)

, eot = a(so−1,ht) (3)

where a(·) is a neural network (with one or two hidden layers).

Model architecture and training

1. Model training - The model can be trained by maximising the
average conditional log-likelihood over all the training set as

M̂ = arg max
M

1

N

N∑
n=1

logP (yn1 , . . . , y
n
O|xn

1 , . . . ,x
n
T ,M)

whereM denotes the set of model parameters, and N is the number of
training utterances. The model was trained using stochastic gradient
decent (SGD) with the Adadelta algorithm to automatically estimate
the learning rates.

2. Types of encoders
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3. Downsampling - Modelling such long sequences is challenging
to RNNs even with gated recurrent units, especially due to high com-
putational requirement. We explore an approach of downsampling the
input sequence at the low-level acoustic features and at the level of
encoder representations. It can give 2 - 3 times speedup.

4. Deep alignment model
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Experiments

1. System configuration

• we trained the model using 300hrs Switchboard data

• 1000 hidden units and ∼30k vocabulary size

• It took ∼ 15 epochs to converge and ∼ 4 - 5 days to train with
downsampling

2. Results of using different encoders

Encoder #layers CHM SWB Avg
Tied BiRNN 1 70.5 55.0 62.8
Tied BiRNN 2 67.3 51.3 59.3
Tied BiRNN 3 68.1 54.0 61.1
Untied BiRNN 1 61.3 40.8 51.1
Untied BiRNN 2 60.5 41.2 50.9
Untied BiRNN 3 67.7 46.2 57.0
FeedForward 1 93.2 86.5 89.9

3. Results of downsampling

Step Splicing Space CHM SWB Avg
1 ±5 feature 62.7 47.6 55.2
2 ±5 feature 61.3 40.8 51.1
3 ±5 feature 59.9 38.8 49.4
4 ±5 feature 60.2 41.7 51.0
2 ±5 hidden 60.7 42.3 51.5
3 ±5 hidden 58.9 41.7 50.3

4. Results of using deep alignment model

#layers CHM SWB Avg
1 59.9 38.8 49.4
2 60.6 40.8 50.8

Conclusion - In this paper, we study the application of an RNN
encoder-decoder model for large vocabulary end-to-end speech recog-
nition. Without using any language model or pronunciation lexicon,
we have obtained encouraging recognition accuracy on the Switchboard
corpus. Our experiments show that using RNNs in the encoder is es-
sential for the success of this model architecture, and using separate
feedforward neural networks for feature extraction in the encoder can
reduce the word error rate.
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