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Carry on from Mark1

• Sequence-to-sequence modelling
◦ speech synthesis:

word sequence → waveform

◦ speech recognition:
waveform → word sequence

◦ machine translation:
word sequence → word sequence

1Assuming that you were in the talk with attention and long-term memory.
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Next Question

• Is speech recognition more special?
◦ monotonic alignment

◦ long input sequence

◦ output sequence is much shorter (word/phonme)

3 of 27



Speech Recognition

• monotonic alignment
◦ encoder-decoder model does not naturally apply
◦ x1:T → c→ y1:L

• long input sequence
◦ expensive for global normalised model

• output sequence is much shorter (word/phonme)
◦ length mismatch
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Speech Recognition

• Hidden Markov Model

◦ monotonic alignment
√

◦ long input sequence → locally normalised

◦ length mismatch → hidden states

• Connectionist Temporal Classification
◦ monotonic alignment

√

◦ long input sequence → locally normalised

◦ length mismatch → blank state
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Speech Recognition

• Locally normalised models:
◦ conditional independence assumption

◦ label bias problem

◦ better results given by sequence training: local → global normalisation

• Question:
Why not sticking to the globally normalised models from scratch?

[1] D. Andor, et al, “Globally Normalized Transition-Based Neural Networks”, ACL, 2016.

[2] D. Povey, et al, “Purely sequence-trained neural networks for ASR based on lattice-free

MMI” Interspeech, 2016
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(Segmental) Conditional Random Field

CRF segmental CRF
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(Segmental) Conditional Random Field

• CRF [Lafferty et al. 2001]

P(y1:L | x1:T ) =
1

Z (x1:T )

∏
j

exp
(
w>Φ(yj , x1:T )

)
(1)

where L = T .

• Segmental (semi-Markov) CRF [Sarawagi and Cohen 2004]

P(y1:L,E, | x1:T ) =
1

Z (x1:T )

∏
j

exp
(
w>Φ(yj , ej , x1:T )

)
(2)

where ej = 〈sj , nj〉 denotes the beginning (sj) and end (nj) time
tag of yj ; E = {e1:L} is the latent segment label.
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(Segmental) Conditional Random Field

1
Z(x1:T )

∏
j exp

(
w>Φ(yj , x1:T )

)

• Learnable parameter w

• Engineering the feature function Φ(·)

• Designing Φ(·) is much harder for speech than NLP
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Neural Segmental CRF

• Using (recurrent) neural networks to learn the feature function
Φ(·).

x1 x2 x3 x4

y2y1

x5 x6

y3

[1] Y. Liu, et al, “Exploring Segment Representations for Neural Segmentation Models”,
arXiv 2016.
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Neural conditional random fields

• Training criteria
◦ Conditional maximum likelihood

L(θ) = logP(y1:L | x1:T )

= log
∑
E

P(y1:L,E | x1:T ) (3)

◦ Hinge loss – similar to structured SVM
.

something complicated!
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Neural conditional random fields

• Viterbi decoding
◦ Partially Viterbi decoding

y∗1:L = arg max
y1:L

log
∑
E

P(y1:L,E | x1:T ) (4)

◦ Fully Viterbi decoding

y∗
1:L,E

∗ = arg max
y1:L,E

logP(y1:L,E | x1:T ) (5)

[1] L. Lu, et al, “Segmental Recurrent Neural Networks for End-to-end Speech

Recognition”, Interspeech 2016.

12 of 27



Related works

• (Segmental) CRFs for speech

• Neural CRFs

• Structured SVMs
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Comparison to CTC

[1] A. Senior, et al, “Acoustic Modelling with CD-CTC-sMBR LSTM RNNs”, ASRU 2015.
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Comparison to CTC

x1 x2 x3 x4

ŷ1 ŷ2 ŷ3 ŷ4
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Comparison to CTC
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Comparison to CTC
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Experiment

• TIMIT dataset
◦ 3696 training utterances (∼ 3 hours)

◦ core test set (192 testing utterances)

◦ trained on 48 phonemes, and mapped to 39 for scoring

◦ log filterbank features (FBANK)

◦ using LSTM as an implementation of RNN
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Experiment

• Speed up training

x1 x2 x3 x4
· · ·

x1 x2 x3 x4
· · ·

a) concatenate / add

b) skip
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Experiment

Table: Results of tuning the hyperparameters.

Dropout layers hidden PER
3 128 21.2

0.2 3 250 20.1
6 250 19.3
3 128 21.3

0.1 3 250 20.9
6 250 20.4

× 6 250 21.9
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Experiment

Table: Results of three types of acoustic features.

Features Deltas d(xt) PER
24-dim FBANK

√
72 19.3

40-dim FBANK
√

120 18.9
Kaldi × 40 17.3

Kaldi features – 39 dimensional MFCCs spliced by a context window of 7, followed by
LDA and MLLT transform and with feature-space speaker-dependent MLLR
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Experiment

Table: Comparison to related works.

System LM SD PER
HMM-DNN

√ √
18.5

first-pass SCRF [Zweig 2012]
√ × 33.1

Boundary-factored SCRF [He 2012] × × 26.5
Deep Segmental NN [Abdel 2013]

√ × 21.9
Discriminative segmental cascade [Tang 2015]

√ × 21.7
+ 2nd pass with various features

√ × 19.9
CTC [Graves 2013] × × 18.4
RNN transducer [Graves 2013] – × 17.7
Attention-based RNN [Chorowski 2015] – × 17.6
Segmental RNN × × 18.9
Segmental RNN × √

17.3
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Conclusion

• Neural Segmental CRFs are flexible and powerful sequence models
◦ handwriting recognition

◦ joint word segmentation and POS tagging

• However, speed matters for large vocabulary speech recognition
◦ WFST-based decoder

◦ context-dependent vs. context-independent phones

[1] L. Kong, et al, “Segmental Recurrent Neural Networks”, ICLR 2016.

26 of 27



Thank you ! Questions?
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