Neural Segmental CRFs for Sequence Modelling

Liang Lu

Based on the work with Lingpeng Kong @ CMU

28 June 2016

THE UNIVERSITY of EDINBURGH

Carry on from Mark¹

- Sequence-to-sequence modelling
 - $\circ~$ speech synthesis: word sequence \rightarrow waveform
 - $\circ~$ speech recognition: waveform $\rightarrow~$ word sequence
 - machine translation:
 - word sequence \rightarrow word sequence

 $^{^1}_{2 \text{ of } 27} \text{Assuming that you were in the talk with attention and long-term memory.}$

Next Question

- Is speech recognition more special?
 - monotonic alignment
 - long input sequence
 - output sequence is much shorter (word/phonme)

Speech Recognition

- monotonic alignment
 - $\circ~$ encoder-decoder model does not naturally apply
 - $\circ \ \textbf{x}_{1:\mathcal{T}} \rightarrow \textbf{c} \rightarrow \textbf{y}_{1:\mathcal{L}}$
- long input sequence
 - $\circ~$ expensive for global normalised model
- output sequence is much shorter (word/phonme)
 - length mismatch

Speech Recognition

- Hidden Markov Model
 - $\,\circ\,$ monotonic alignment $\sqrt{}\,$
 - $\circ~$ long input sequence \rightarrow locally normalised
 - $\circ~$ length mismatch \rightarrow hidden states
- Connectionist Temporal Classification
 - $\,\circ\,$ monotonic alignment $\sqrt{}\,$
 - $\circ~$ long input sequence \rightarrow locally normalised
 - $\circ~$ length mismatch \rightarrow blank state

the UNIVERSITY of Edinburgh

Speech Recognition

- Locally normalised models:
 - $\circ~$ conditional independence assumption
 - label bias problem
 - $\,\circ\,$ better results given by sequence training: local $\,\rightarrow\,$ global normalisation
- Question:

Why not sticking to the globally normalised models from scratch?

 D. Andor, et al, "Globally Normalized Transition-Based Neural Networks", ACL, 2016.
 D. Povey, et al, "Purely sequence-trained neural networks for ASR based on lattice-free MMI" Interspeech, 2016

(Segmental) Conditional Random Field

CRF

segmental CRF

(Segmental) Conditional Random Field

• CRF [Lafferty et al. 2001]

$$P(\mathbf{y}_{1:L} \mid \mathbf{x}_{1:T}) = \frac{1}{Z(\mathbf{x}_{1:T})} \prod_{j} \exp\left(\mathbf{w}^{\top} \Phi(y_j, \mathbf{x}_{1:T})\right)$$
(1)

where L = T.

Segmental (semi-Markov) CRF [Sarawagi and Cohen 2004]

$$P(\mathbf{y}_{1:L}, \mathbf{E}, | \mathbf{x}_{1:T}) = \frac{1}{Z(\mathbf{x}_{1:T})} \prod_{j} \exp\left(\mathbf{w}^{\top} \Phi(y_j, \mathbf{e}_j, \mathbf{x}_{1:T})\right)$$
(2)

where $\mathbf{e}_j = \langle s_j, n_j \rangle$ denotes the beginning (s_j) and end (n_j) time tag of y_j ; $\mathbf{E} = \{\mathbf{e}_{1:L}\}$ is the latent segment label.

(Segmental) Conditional Random Field

$$\frac{1}{Z(\mathbf{x}_{1:T})}\prod_{j}\exp\left(\mathbf{w}^{\top}\Phi(y_{j},\mathbf{x}_{1:T})\right)$$

- Learnable parameter w
- Engineering the feature function $\Phi(\cdot)$
- Designing $\Phi(\cdot)$ is much harder for speech than NLP

Neural Segmental CRF

• Using (recurrent) neural networks to learn the feature function $\Phi(\cdot)$.

[1] Y. Liu, et al, "Exploring Segment Representations for Neural Segmentation Models", arXiv 2016. 10 of 27

Neural conditional random fields

- Training criteria
 - Conditional maximum likelihood

$$\mathcal{L}(\theta) = \log P(\mathbf{y}_{1:L} \mid \mathbf{x}_{1:T})$$

=
$$\log \sum_{\mathbf{E}} P(\mathbf{y}_{1:L}, \mathbf{E} \mid \mathbf{x}_{1:T})$$
(3)

Hinge loss – similar to structured SVM

something complicated!

Neural conditional random fields

- Viterbi decoding
 - Partially Viterbi decoding

$$\mathbf{y}_{1:L}^* = \arg \max_{\mathbf{y}_{1:L}} \log \sum_{\mathbf{E}} P(\mathbf{y}_{1:L}, \mathbf{E} \mid \mathbf{x}_{1:T})$$
(4)

• Fully Viterbi decoding

$$y_{1:L}^*, \mathbf{E}^* = \arg \max_{\mathbf{y}_{1:L}, \mathbf{E}} \log P(\mathbf{y}_{1:L}, \mathbf{E} \mid \mathbf{x}_{1:T})$$
(5)

[1] L. Lu, et al, "Segmental Recurrent Neural Networks for End-to-end Speech Recognition", Interspeech 2016.

Related works

- (Segmental) CRFs for speech
- Neural CRFs
- Structured SVMs

[1] A. Senior, et al, "Acoustic Modelling with CD-CTC-sMBR LSTM RNNs", ASRU 2015.

the UNIVERSITY of Edinburgh

Experiment

- TIMIT dataset
 - \circ 3696 training utterances (\sim 3 hours)
 - core test set (192 testing utterances)
 - $^{\circ}\,$ trained on 48 phonemes, and mapped to 39 for scoring
 - log filterbank features (FBANK)
 - $\circ~$ using LSTM as an implementation of RNN

Speed up training

Table: Results of tuning the hyperparameters.

Dropout	layers	hidden	PER
0.2	3	128	21.2
	3	250	20.1
	6	250	19.3
0.1	3	128	21.3
	3	250	20.9
	6	250	20.4
×	6	250	21.9

Table: Results of three types of acoustic features.

Features	Deltas	$d(\mathbf{x}_t)$	PER
24-dim FBANK		72	19.3
40-dim FBANK		120	18.9
Kaldi	×	40	17.3

Kaldi features – 39 dimensional MFCCs spliced by a context window of 7, followed by LDA and MLLT transform and with feature-space speaker-dependent MLLR

Table: Comparison to related works.

System		SD	PER
HMM-DNN			18.5
first-pass SCRF [Zweig 2012]		×	33.1
Boundary-factored SCRF [He 2012]		×	26.5
Deep Segmental NN [Abdel 2013]		×	21.9
Discriminative segmental cascade [Tang 2015]		×	21.7
+ 2nd pass with various features	\checkmark	×	19.9
CTC [Graves 2013]	×	Х	18.4
RNN transducer [Graves 2013]		×	17.7
Attention-based RNN [Chorowski 2015]		×	17.6
Segmental RNN		×	18.9
Segmental RNN	×		17.3

Conclusion

- Neural Segmental CRFs are flexible and powerful sequence models

 handwriting recognition
 - $\circ~$ joint word segmentation and POS tagging
- However, speed matters for large vocabulary speech recognition • WFST-based decoder
 - $\circ~$ context-dependent vs. context-independent phones

[1] L. Kong, et al, "Segmental Recurrent Neural Networks", ICLR 2016.

Thank you ! Questions?