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o At the outset of NST we identified several weaknesses with
speech technology systems

* Fragile operation across domains
* Synthesis and recognition developed independently

* Reliance on supervised approaches, manually transcribed training
data

* Models for synthesis and recognition include relatively little
speech knowledge

* Models only weakly factor the underlying sources of variability

* Systems react crudely (if at all) to the context / environment

®* These weaknesses still drive our objectives
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® | earning and Adaptation

* learning to compactly represent speech and to adapt to new
scenarios and speaking styles

e Natural Speech Transcription

* Speech recognition systems that operate seamlessly across
domain and acoustic environment

e Natural Speech Synthesis

* Controllable synthesisers that learn from data, and can generate
expressive conversational speech

e Exemplar Applications

* prototype deployment in applications, focusing on health/social
domain, media, and the needs of User Group stakeholders
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e Best paper awards at IEEE SLT-2015, IEEE ICASSP-2014
e Open source software — HTK, Kaldi, HTS

e Speech Recognition applications — BBC (NewsHack and
MGB Challenge), Ericsson (Just-in-time ASR), MediaEval,
Browsing oral history (English Heritage)

® Voice banking and reconstruction
® homeService

e Challenges and Evaluations — Spoofing challenge at
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e HTK 3.5 will support ANNs, maintaining compatibility with most
existing functions.

* Minimises the effort to reuse previous source code and tool
* Allows transfer of e.g. SI/SD input transforms, MPE/MMI sequence training
* 64-bit compatible

e (Generic extensions

* Flexible input feature configurations
* ANN structures can be any directed acyclic graph

* Stochastic gradient descent supporting frame/sequence training
* CPU/GPU math kernels for ANNs

® Decoders extended to support tandem/hybrid systems, system
combination
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e HTK v3.5 support for decoding RNN language models

* Lattice rescoring using RNNLMs
* Class / Full word outputs, interpolation with n-grams

* Similar functionality for feed-forward NN LMs

e RNINLM estimation enhancements

* bunch mode GPU training
* full/class output RNN LMs

* NCE training

* variance regularised training



Natural
Speech
Technology
Edinburgh — Cambridge — Sheffield

MGB Challenge

VGB fiae

CHALLENGE Home Dates Registration

Evaluation tasks Downloads Recipe @ ASRU 2015

The challenge

The Multi-Genre Broadcast (MGB) Challenge is a new evaluation of speech recognition, speaker diarization, and lightly supervised alignr
the British Broadcasting Corporation (BBC). It is an official challenge of the 2015 IEEE Automatic Speech Recognition and Understanding Wor

The speech data is broad and multi-genre, spanning the whole range of BBC TV output, and represents a challenging task for speech technoic

The challenge will use a fixed training set of about 1,600 hours of broadcast audio, together with several hundred million words of subtitle text |
provided to challenge participants, subject to signing a licence agreement with the BBC. The challenge will explore speech recognition and spe
longitudinal setting - i.e. transcription and speaker diarization and linking of several episodes of the same programme. All tasks will also offer tf
make use of supplied metadata including programme title, genre tag, and date/time of transmission, enabling novel approaches for domain an

applied.
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ASVspoof 2015:

Automatic Speaker Verification
Spoofing and Countermeasures Challenge

Introduction

Do you have a method/algorithm to discriminate between human and synthetic speech (generated from speech
synthesis or voice conversion systems)? If so, you are invited to take part in the Automatic Speaker Verification
Spoofing and Countermeasures (ASVspoof) Challenge.

Previously, both spoofing attacks and countermeasures have been developed with full knowledge of a particular
speaker verification system used for vulnerability assessments. Similarly, countermeasures have been developed
with full knowledge of the spoofing attack which they are designed to detect. This is clearly unrepresentative on
the real use case scenario in which the specific attack, much less the specific algorithm, can never been known a
priori. It is thus likely that the prior work has as much over-exaggerated the threat of spoofing as it has the
performance of countermeasures.

The ASVspoof challenge has been designed to help break this mould and to support, for the first time,
independent assessments of vulnerabilities to spoofing and of countermeasure performance. While preventing as
much as possible the inappropriate use of prior knowledge, the challenge aims to stimulate the development of
generalised countermeasures with potential to detect varying and unforeseen spoofing attacks.

The first evaluation, ASVspoof 2015, is being held within the scope of a special session at INTERSPEECH 2015
and with a focus on spoofing detection. Participants are invited to submit spoofing detection results. You will be
provide with a spoofing database along with a protocol for experiments. The spoofing database is generated from
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The Rise and Fall and Rise
of Neural Nets
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Bourlard & Morgan, 1994 Renals, Morgan, Cohen & Franco, ICASSP 1992



Natural
Neural network ! ! Speech

Technology
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Broadcast news 998
Bourlard & Morgan, 1994 20.8% WER

(best GMM-based system, 13.5%)

Cook, Christie, Ellis, Fosler-Lussier, Gotoh,
Kingsbury, Morgan, Renals, Robinson, & Williams,

DARPA, 1999
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e Computationally restricted to monophone outputs

* CD-RNN factored over multiple networks — limited within-word
context

® Training not easily parallelisable

* experimental turnaround slower
* systems less complex (fewer parameters)

* RNN — <100k parameters

* MLP — ~IM parameters

e Rapid adaptation hard (cf MLLR)
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e Fewer limitations on inputs

 Correlated features

 Multi-frame windows

e Discriminative training criteria (frame level and sequence
level)

e Can be used to generate ‘higher-level’ features

* tandem, posteriorgrams

e bottleneck features
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Q ~6000 CD phone outputs Q

e

©~2ooo hidden units Q

3-8 hidden layers

S O

>< Dahl, Yu, Deng & Acero, IEEE TASLP 2012
9x39 MFCC inputs

Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior,Vanhoucke,
Nguyen, Sainath & Kingsbury, IEEE SP Mag 2012
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~6000 CD phone outputs
WIDE

><Softmax output layer

©~2ooo hidden units Q

3-8 hidden layers D E E P

Automatically learned
feature extraction

O O

ACOUSTIC INPUT

) , Dahl,Yu, Deng & Acero, IEEE TASLP 2012
SPeCFraI' Cepstral. Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior,Vanhoucke,
Derived features? Nguyen, Sainath & Kingsbury, [EEE SP Mag 2012
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TRAINING

~6000 CD phone outputs
Q O WIDE — optimisation,
><Softmax output layer objective fn

Q Q WEIGHT SHARING

3-8 hidden layers DEEP - adaptation’ CNNS
Ntomatically IeamedARCHITECTURES
feature extraction
ADAP ION — recurrent,
O Q convolutional, ...
« ACTIVATION FUNCTIONS

ACOUSTIC INPUT . .
Spectral? Cepstral? — pooling, RELU, gated units
Derived features!?
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TRAINING

___ vocoder — optimisation,
it layer objective fn

parameters

— adaptation, CNNs
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e 9:30 - 11:20 Intro, 4 talks, poster spotlights

e |[:20 — 13:00 Coffee + demos/posters [LR4, ground floor]

e |3:00 — I4:15 Lunch

 [4:15— 15:15 3 talks

o |5:15— 15:45 Coffee

® |5:45 — 16:45 Discussion: Clinical, Media, Future Challenges

® [6:45-17:.00 Wrap-up

e [7:00— 18:30 Advisory board meeting

e [9:00 Dinner at Emmanuel College

Eng d Pt al Sciences

Research Council



