Voice Banking and Voice Reconstruction

Christophe Veaux, Pierre Lanchantin, Gergely Bakos, Junichi Yamagishi, Simon King

Edinburgh, 28 June 2016

Edinburgh - Cambridge - Sheffield

Building personalised VOCAs

Degenerative diseases leading to dysarthria (MND, Parkinson, MS)

- Dysarthria influences all levels of speech production: phonation, respiration, articulation, resonance and prosody
- The deteriorations proceed individually and the variation in the quality of speech problems is large between adults [Yorkston et al., 1993]
- Word intelligibility can decrease from 95 % to 88 % during a 6 months period [Watts and Vanryckeghem, 2001)]

Building personalised VOCAs

Voice Output Communication Aid (VOCA)

- Current VOCAs only provide a small range of voice
- not a good match of age, accent, speaking style

Personalisation of VOCAs

- facilitate social interaction
- Speech is not just a mean of communication but also a display of personal and group identity
- greater dignity and improved self-identity for the individual and their family

Personalised voices is a long standing request from VOCA users

Building personalised VOCAs

Edinburgh – Cambridge – Sheffield

Voice banking

• Capturing the voice before it starts to degrade

Voice donation

• In order to build average voice models for speaker adaptation

Voice reconstruction

• For patients who already have speech disorders at the time of recording

Pre-NST

Edinburgh - Cambridge - Sheffield

Pilot study on Voice banking / Voice Reconstruction

• Recording of 100 donors and 7 patients

HMM based speech synthesis for voice building

• helps to reduce complexity and to increase the flexibility of the voice building process (adaptation of pre-trained AVMs, voice reconstruction)

Pre-NST

Edinburgh – Cambridge – Sheffield

"Manual" voice reconstruction

 fixing statistical models of the patient's voice clone so that they can generate natural sounding speech while keeping speaker identity

Voice banking project (NST)

Edinburgh – Cambridge – Sheffield

Objectives

- Automates voice reconstruction
- Better voice similarity through better coverage of accents
- Development of tools for speech and language therapists as well as VOCA app for patients

Large scale clinical trial

- More than 900 healthy donors voices
- More than 100 patients
- Feedback from all patients and their families on the personalised voice and its impact on their quality of life

Edinburgh – Cambridge – Sheffield

Voice Reconstruction

First approach: model interpolation

- Post-process after speaker adaptation
- Two methods:
 - Manual tailoring of the interpolation coefficients (Pre-NST)
 - Automatic interpolation using KLD-based confidence measure

Voice Reconstruction

Edinburgh – Cambridge – Sheffield

- Original voice (MND patient)
- Interpolation of the *less* speaker-dependant model components

Impact on speaker identity

Interpolation weights can be adjusted manually by a SLT

Voice Reconstruction

Edinburgh - Cambridge - Sheffield

KLD-based confidence measures

KL distances between the context-dependent models of the patient voice model and the AVM

Edinburgh – Cambridge – Sheffield

Voice Reconstruction

Listening tests (40 listeners)

- Two recordings of a same MND patient
- one "healthy voice" recording (just after diagnosis)
- one "disordered voice" recording (10 months later)

Compared synthetic voices:

- HC: Voice clone of "healthy speech"
- IC: Voice clone of "impaired speech"
- IR1: Manual (tailored) model interpolation
- IR2: Automatic model interpolation
- AV: Average voice model

Voice Reconstruction

Second approach: multiple AVMs interpolation (hybrid between AVM and CAT)

- the adapted mean vector of a component is interpolated in an eigenspace spanned by the cluster mean vectors
- but clusters are AVMs which can be tuned towards the target before interpolation

Multiple AVM interpolation

Edinburgh – Cambridge – Sheffield

- Interpolation eigenspace can be designed using different combination of AVM/target voices
- Interpolation can be done in a clean space by selecting healthy target voices close to the disordered one
- Constrained interpolation: limited degrees of freedom helps to reduce the "noise" due to disorders in the adaptation data

Multiple AVM interpolation

Edinburgh – Cambridge – Sheffield

Listening tests (38 listeners):

- interp: Multiple AVM interpolation
- tailored: manually reconstructed by speech therapist

Voice Reconstruction

Selected approach: model interpolation with KLD-based confidence measure

The need of accent-specific AVMs

Edinburgh – Cambridge – Sheffield

Improves speaker similarity

 An average voice learned over a small number of speakers perceptually close to the target gives better results than a large average voice model

Needed for voice reconstruction

• Model interpolation require an AVM close to the patient's voice or a set of AVMs

Large scale voice recordings

Record a large number of speakers with different age, gender and accent

Semi-anechoic chamber of School of Informatics,

Anne Rowling Regenerative Neurology Clinic (Jan 2013): Voice banking studio

Large scale voice recordings

Record a large number of speakers with different age, gender and accent

Edinburgh – Cambridge – Sheffield

Corpus design

Text materials

- 400 sentences in average for each speaker (1 hour recording session)
- Sentences taken from a corpus of newspaper articles (1300000 sentences)
- Rainbow passage (covers a wide variety of consonant clusters)
- Accent elicitation (phonetic shifts) sentences from the Speech Accent Archive

Metadata

• Age, gender, accent (from childhood location), occupation (education level)

Specifically designed for the training of accent specific average voice models

• Different lexicons (change of phonetic inventory and segmental structure)

Combilex lexicon (RPX, Scottish English, US English)

- Each speaker records a different text script
- Phonetic and prosodic coverage is optimized across several speakers

Greedy selection of the best set of sentences that

- Maximize the trigram and phone coverage (Most frequent unit first)
- Balance the distribution of number of syllables and phrases (Less frequent unit first)

Coverage optimization favors more complex sentences

Readability constraints

Corpus design

Edinburgh – Cambridge – Sheffield

Principal correlates of sentence complexity [Tanguy & Tulechki, 2009]

- Number of words per sentence
- Number of syllables per sentence
- Length of noun phrases
- Syntactic complexity
 - (POS trigram frequencies)
- Lexical complexity
 - (word frequencies)

Readability filtering ratio ~ 30 %

• 99% trigram coverage reached after ~3500 sentences

Edinburgh – Cambridge – Sheffield

Voice corpus

Edinburgh – Cambridge – Sheffield

- Voice donors are pooled into clusters to create average voice models (AVM) with specific accent / gender
- Approximately 10 speakers (4000 sentences) required to build an average voice
- First approach is based on meta-data:

Hierarchy: Gender >> Country >> Broad accent >> Regional accent

Edinburgh - Cambridge - Sheffield

Edinburgh – Cambridge – Sheffield

ACCDIST [Huckvale, M., 2007]

 For each speaker, acoustic distances between same vowels in different contexts

cat, father, after

- Vowel distance tables
 for each speaker
- (60 mcep and dmcep coefficients at the center of the vowel)

SouthEast						
Vowel Distance	father	cat				
after	2.27	3.21				
father	0	3.71				

- Correlation between distance tables of pairs of speakers
 - Pair-wise similarity measure of the phonological systems between speakers
 - Removes influence of speaker identity variation

Experiment

- Hierarchical clustering of Scottish female speakers based on ACCDIST
- Only clusters with more than 20 speakers are considered
- AVM are learned over each cluster of speakers 🔶 7 AVMs
- 10 target Scottish female speakers selected in different geographical regions
- For each target speaker, the best AVM is selected based on likelihood

Similarity test

- Comparison of speaker adapted voices using the best AVM derived from metadata versus the best AVM derived from acoustic data (hierarchical clusters)
- Reference is the target speaker voice

Similarity (MOS)

Tools for clinical trial

Edinburgh - Cambridge - Sheffield

Edinburgh – Cambridge – Sheffield

Speech Recorder

- iOs application
- Automatic monitoring of a recording
- Can be use without assistance of a SLT
- Texts optimised for triphone coverage but with a readability constraint (syllable bigrams and word / sentence length)
- The recordings are automatically uploaded to the server

Voice Cloning ToolKit (VCTK)

Edinburgh – Cambridge – Sheffield

					·····	
Available Voice Data					Processing Log Stop v	oice build
Scotland \$				Rescan		
Search:						
Recording Reference Number	Last modified	# Wave	# Text	Voice status		
p646_r716_20140320	2014.03.27	399	399	unavailabl	TTS connection established	
p650_r720_20140320	2014.04.17	401	401	availabl		
p651_r721_20140320	2014.04.17	402	402	unavailabl		
p654_r724_20140324	2014.03.27	312	312	unavailabl		
p656_r727_20140326	2014.04.22	299	299	availabl		
p659_r730_20140401	2014.05.01	409	409	availabl		
p660_r741_20140414	2014.05.27	404	404	unavailabl		
p663_r735_20140405	2014.04.22	409	409	unavailabl		
p664_r736_20140408	2014.05.08	404	404	unavailabl		
p665_r763_20140715	2014.07.16	24	24	availabl		
p669_r744_20140502	2014.05.22	405	405	unavailabl		
p672_r748_20140506	2014.05.06	28	28	unavailabl		
p673_r751_20140507	2014.05.07	53	53	availabl		
p674_r753_20140516	2014.05.22	404	404	unavailabl		
p678_r758_20140626	2014.07.15	407	407	unavailabl		
p679_r759_20140701	2014.07.10	396	396	unavailabl		
p680_r760_20140703	2014.07.17	399	399	availabl		
p681_r761_20140703	2014.07.17	401	401	unavailabl		
p683_r764_20140715	2014.07.16	388	388	availabl		
p684_r768_20140807	2014.08.07	403	403	unavailabl		
p687_r769_20140812	2014.08.12	404	404	availabl		
p689_r778_20140812	2014.08.12	405	405	unavailabl		
				9.11		
+	Build Voices		Build Av	verage Voice		
					Festival Client	
					Connected	
1					Connected	
					Speak Save	Settings

- Software designed to be used by clinicians
- automates the recording and voice building process
- Voices can built in a couple of hours
- Once built, voices can be repaired in a couple of minutes

Edinburgh – Cambridge – Sheffield

SpeakUnique

- iOs application
- Automatic download of the repaired voice model
- Offline synthesis
- Feedback form

Delivering Voices: Speak Unique

Edinburgh - Cambridge - Sheffield

Voice evaluation

Edinburgh – Cambridge – Sheffield

Online comparison of the personalised voice

- 6 samples sentences
- Personalised voice is compared to a generic voice for VOCA (Cereproc unit selection voice built from 7h recording of voice talent)
- 40 patients completed the online evaluation
- 28 had no repair required, 12 repaired voices
- Rating of intelligibility, naturalness and similarity to own voice
- Personal overall preference

Voice evaluation

Edinburgh - Cambridge - Sheffield

- No significant difference in intelligibility and naturalness
- Personalised voices significantly more similar to patient's own voice

P I Natural Speech Technology

Edinburgh – Cambridge – Sheffield

Voice evaluation

Overall preference

- 80% of the 40 participants expressed a preference for personalised synthetic voice over the generic alternative
- However only 56% of those with 'repaired' voice preferred personalised
- Comments: voice slightly robotic, not able to reproduce "strong" accent, missing naturalness of spontaneous speech

Voice banking and delivery

Edinburgh – Cambridge – Sheffield

Conclusions

- Proof of concept is daily running in Anne Rowling Clinic
- Repaired voices delivered to 100 patients
- Large survey of the feedback form patients and their families
- Assessment of the improvement in terms of Quality of Life
- Spread out of the tools to company or communities / associations