
Voice Banking and Voice Reconstruction

Christophe Veaux, Pierre Lanchantin, Gergely Bakos, Junichi Yamagishi, Simon King

Cambridge, 28 May 2015

Edinburgh - Cambridge - Sheffield

NaturalSpeechTechnology

Edinburgh – Cambridge – Sheffield

Outline

- Personalised VOCAs
- Clinical trial: the voice banking project
- Overview of different approaches for voice reconstruction
- Speaker clustering to create age and accent specific average voice models
- Voice reconstruction (Model interpolation)
- Voice reconstruction (Multiple AVMs interpolation)
- Subjective experiments and results
- Perspectives

Building personalised VOCAs

Degenerative diseases (MND, Parkinson, MS)

- MND may steal the voice very rapidly (within a few months)
- Some patients may already have speech disorders at the time of diagnosis

Personalisation of VOCAs

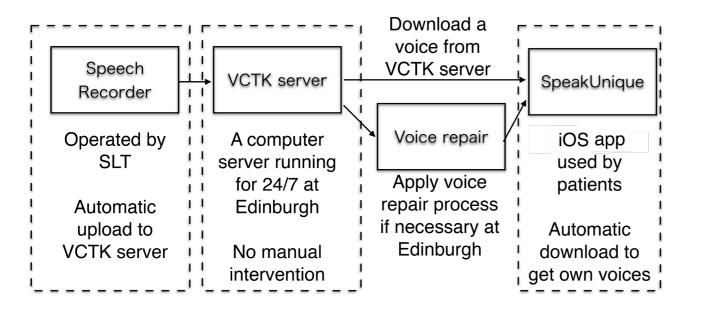
- facilitate social interaction
- greater dignity and improved self-identity for the individual and their family

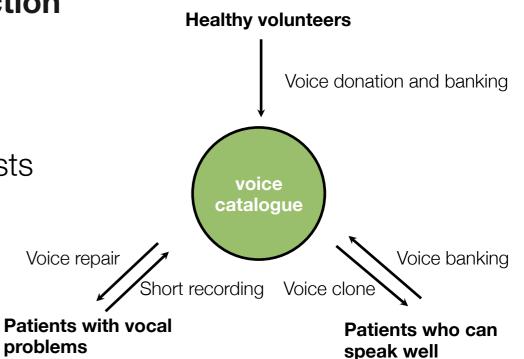
Voice banking

• Capturing the voice before it starts to degrade

HMM based speech synthesis for voice building

• helps to reduce complexity and to increase the flexibility of the voice building process (adaptation of pre-trained AVMs, voice reconstruction)




Voice banking project

Edinburgh – Cambridge – Sheffield

Clinical trial for voice banking and voice reconstruction

- More than 900 healthy donors voices
- 68 patients with various degrees of speech impairment
- Development of tools for speech and language therapists as well as VOCA app for patients

Voice Cloning ToolKit (VCTK)

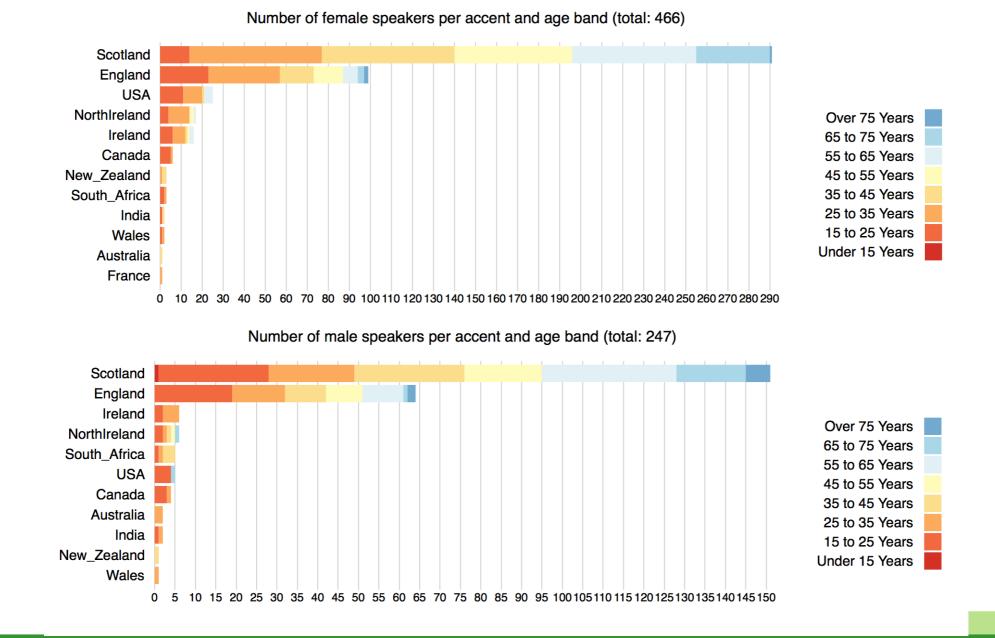
Edinburgh – Cambridge – Sheffield

	Available Voice	Data			Processing Log	Stop voice b
Scotland ‡				Rescan		
earch:						
Recording Reference Numbe	r Last modified	# Wave	# Text	Voice status		
646_r716_20140320	2014.03.27	399	399	unavailabl	TTS connection established	
0650_r720_20140320	2014.04.17	401	401	availabl		
0651_r721_20140320	2014.04.17	402	402	unavailabl		
0654_r724_20140324	2014.03.27	312	312	unavailabl		
0656_r727_20140326	2014.04.22	299	299	availabl		
0659_r730_20140401	2014.05.01	409	409	availabl		
p660_r741_20140414	2014.05.27	404	404	unavailabl		
0663_r735_20140405	2014.04.22	409	409	unavailabl		
p664_r736_20140408	2014.05.08	404	404	unavailabl		
0665_r763_20140715	2014.07.16	24	24	availabl		
0669_r744_20140502	2014.05.22	405	405	unavailabl		
672_r748_20140506	2014.05.06	28	28	unavailabl		
0673_r751_20140507	2014.05.07	53	53	availabl		
0674_r753_20140516	2014.05.22	404	404	unavailabl		
0678_r758_20140626	2014.07.15	407	407	unavailabl		
0679_r759_20140701	2014.07.10	396	396	unavailabl		
0680_r760_20140703	2014.07.17	399	399	availabl		
0681_r761_20140703	2014.07.17	401	401	unavailabl		
p683_r764_20140715	2014.07.16	388	388	availabl		
0684_r768_20140807	2014.08.07	403	403	unavailabl		
0687_r769_20140812	2014.08.12	404	404	availabl		
p689_r778_20140812	2014.08.12	405	405	unavailabl		
+	Build Voices		Build Av	erage Voice		
					Festival Client	
1						
					Connected	
					Speak Save	Settin
					Speak Save	Jettin

- Software designed to be used by clinicians
- Automatises the recording and voice building process
- Voices can built in a couple of hours
- Once built, voices can be repaired in a couple of minutes

Delivering Voices: Speak Unique

Edinburgh - Cambridge - Sheffield

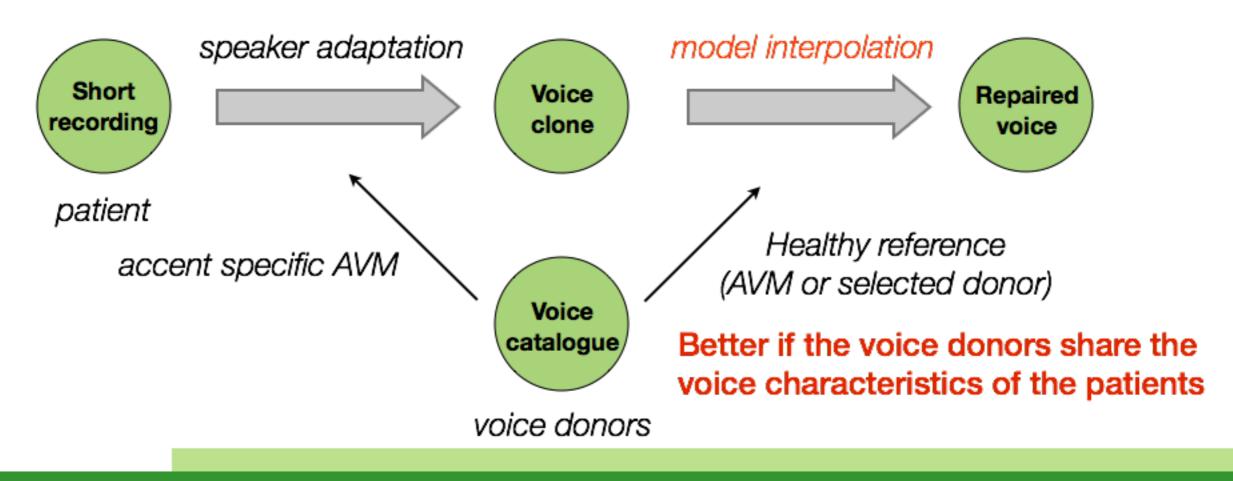


Voice catalogue

Edinburgh - Cambridge - Sheffield

Largest speech database of British English

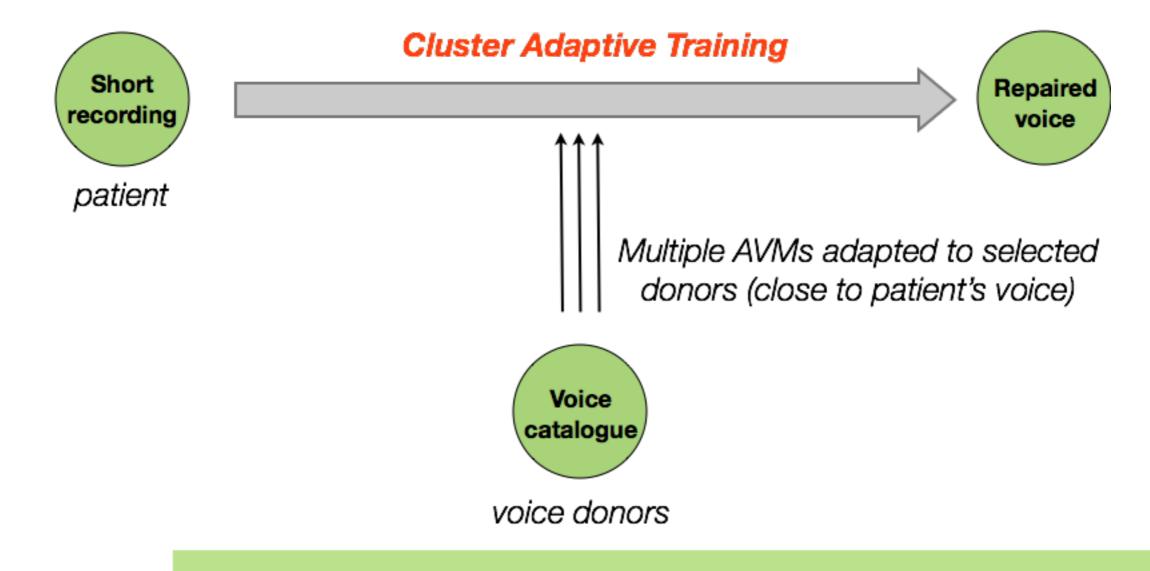
- 1 hour recording for healthy donors (read speech)
- 20 minutes to 1 hour recording for patients


Different approaches of Voice Reconstruction

Edinburgh – Cambridge – Sheffield

First approach: model interpolation

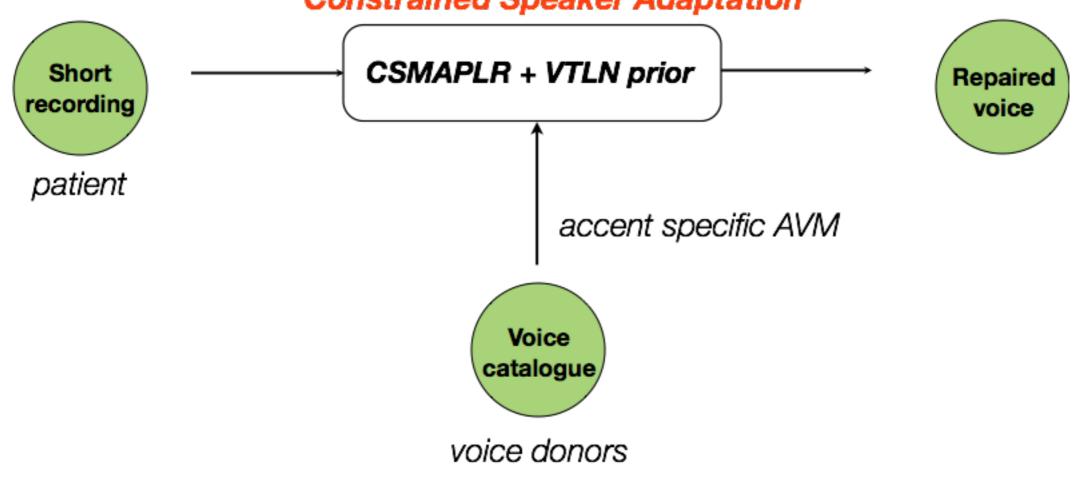
- Principle: fixing statistical models of the patient's voice clone so that they can generate natural sounding speech while keeping speaker identity
- Two methods:
 - Manual tailoring of the interpolation coefficients by SLT
 - Automatic interpolation using KLD-based confidence measure



Different approaches of Voice Reconstruction

Second approach: multiple AVMs interpolation (hybrid between AVM and CAT)

- the adapted mean vector of a component is interpolated in an eigenspace spanned by the cluster mean vectors
- but clusters are AVMs which can be tuned towards the target before interpolation

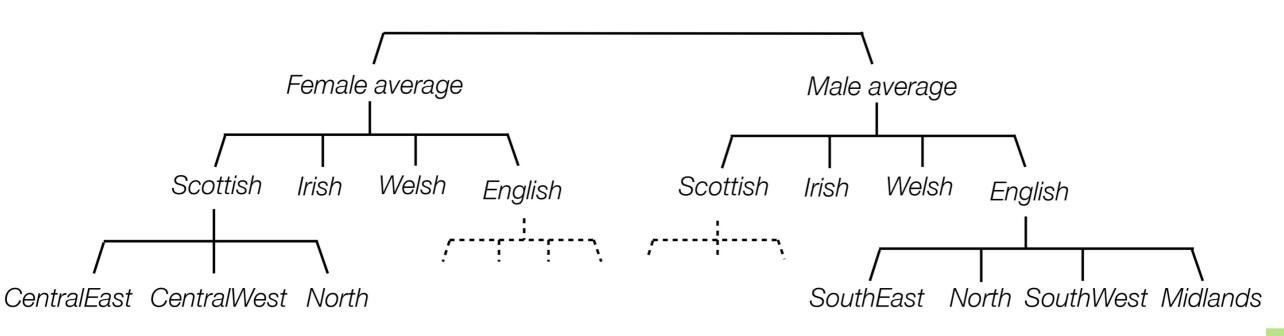


Different approaches of Voice Reconstruction

Third approach: constrained adaptation (*on-going*)

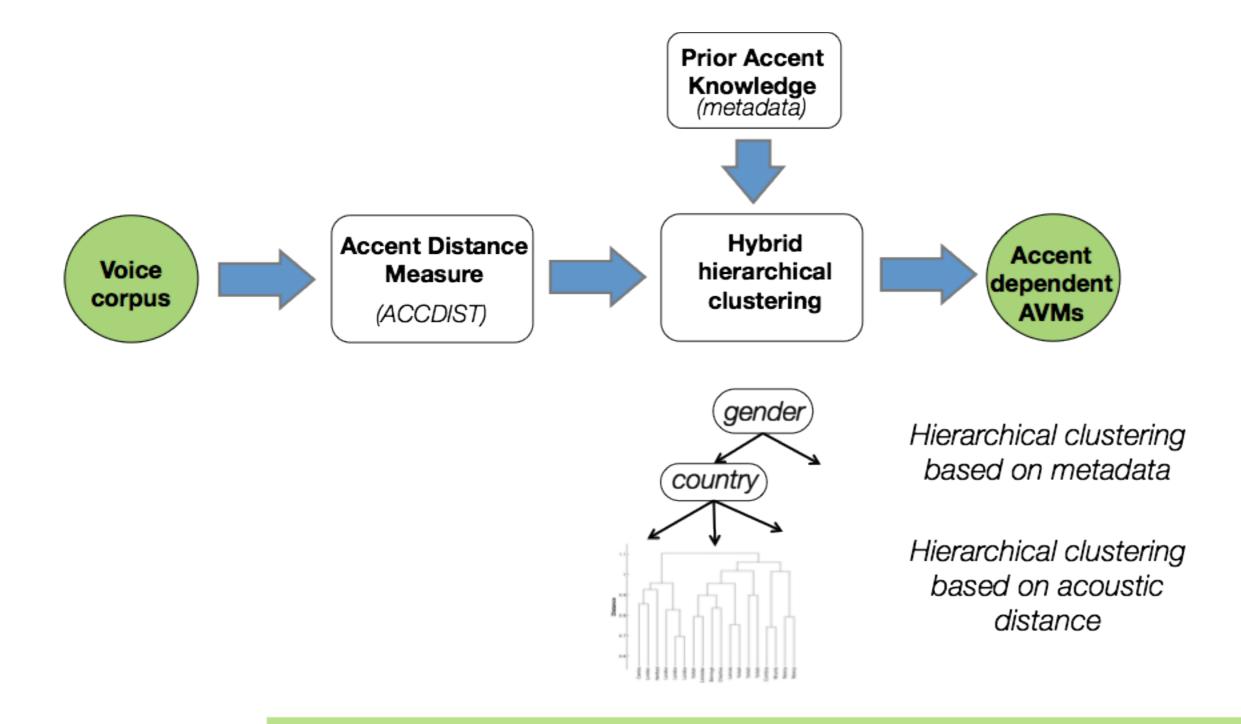
- estimation of the VTLN parameters (global transform) on the most reliable data (e.g. vowels)
- the VTLN transform is used as a prior to constraint the speaker adaptation
- KLD-based confidence measure can be used to adjust the weight of the VTLN prior

Constrained Speaker Adaptation



Edinburgh – Cambridge – Sheffield

- Voice donors are pooled into clusters to create average voice models (AVM) with specific accent / gender
- Approximately 10 speakers (4000 sentences) required to build an average voice
- First approach is based on meta-data:



Hierarchy: Gender >> Country >> Broad accent >> Regional accent

Edinburgh - Cambridge - Sheffield

Edinburgh – Cambridge – Sheffield

ACCDIST [Huckvale, M., 2007]

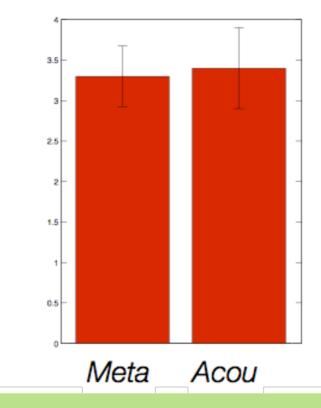
 For each speaker, acoustic distances between same vowels in different contexts

cat, father, after

- Vowel distance tables
 for each speaker
- (60 mcep and dmcep coefficients at the center of the vowel)

SouthEast							
Vowel Distance	father	cat					
after	2.27	3.21					
father	0	3.71					

- Correlation between distance tables of pairs of speakers
 - Pair-wise similarity measure of the phonological systems between speakers
 - Removes influence of speaker identity variation



Experiment

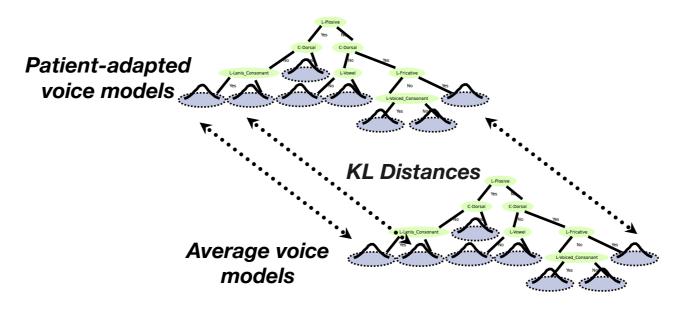
- Hierarchical clustering of Scottish female speakers based on ACCDIST
- Only clusters with more than 20 speakers are considered
- AVM are learned over each cluster of speakers 🔶 7 AVMs
- 10 target Scottish female speakers selected in different geographical regions
- For each target speaker, the best AVM is selected based on likelihood

Similarity test

- Comparison of speaker adapted voices using the best AVM derived from metadata versus the best AVM derived from acoustic data (hierarchical clusters)
- Reference is the target speaker voice

Similarity (MOS)

Edinburgh – Cambridge – Sheffield


Model interpolation

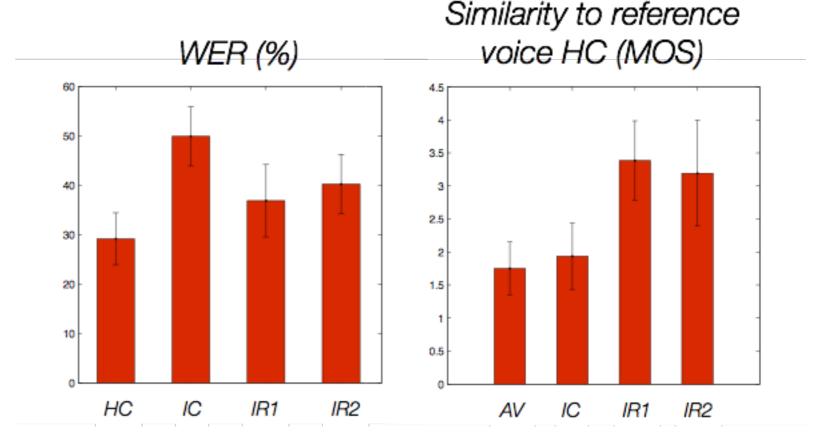
Manual: Interpolation weights are set manually by SLT

- Duration and aperiodicities
- Global variances of log-F0, aperiodicity, mel-cepstrum
- Voiced/Unvoiced weights
- 1st mel-cepstrum coefficient c₀
- High-order mel-cepstrum coefficients (c_n with n>60)
- Dynamics coefficients of mel-cepstrum and log-F0
- Low-order mel-cepstrum coefficients

Impact on speaker identity

Automatic: Interpolation weights are derived from *KLD-based confidence measure*

Model interpolation


Edinburgh – Cambridge – Sheffield

Listening tests (40 listeners)

- Two recordings of a same MND patient
- one "healthy voice" recording (just after diagnosis)
- one "disordered voice" recording (10 months later)

Compared synthetic voices:

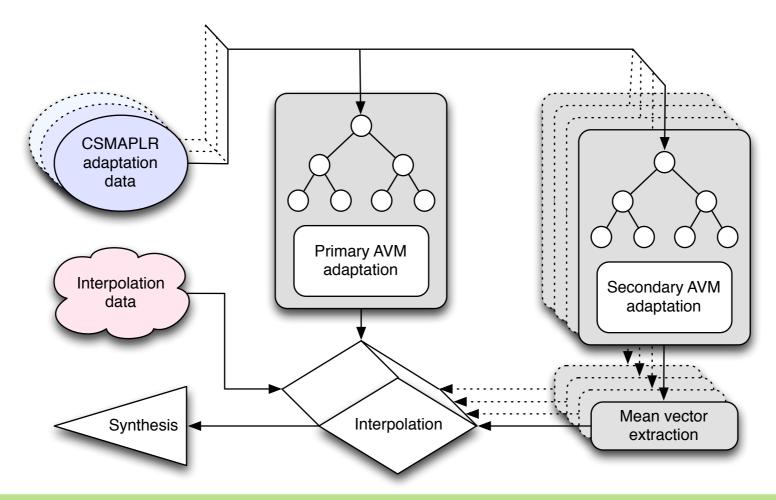
- HC: Voice clone of "healthy speech"
- IC: Voice clone of "impaired speech"
- IR1: Manual (tailored) model interpolation
- IR2: Automatic model interpolation
- AV: Average voice model

Feedback from 15 patients and their families (manual method)

• Comments: too quick, voice slightly robotic, not able to reproduce "strong" accent, missing naturalness of spontaneous speech

Question	Mean Opinion Score	Standard Deviation			
Similarity	3.3	0.7			
Intelligibility	4.2	1.1			

Table 1.2. Feedback from patients and families


(Naturalness Average Score of 3.1 out of 5)

On-going perceptual evaluation with 60 patients, comparing manual and automatic methods

Multiple AVM interpolation

Edinburgh – Cambridge – Sheffield

- Interpolation eigenspace can be designed using different combination of AVM/target voices
- Interpolation can be done in a clean space by selecting healthy target voices close to the disordered one
- Constrained interpolation: limited degrees of freedom helps to reduce the "noise" due to disorders in the adaptation data

Natural Speech Technology

Multiple AVM interpolation

Edinburgh - Cambridge - Sheffield

Experiment:

- Reconstruction of a patient voice with mild dysarthia: Female, Scottish (Glasgow)
- 2 British accent AVMs: English (106 speakers), Scottish (181 speakers) lacksquare
- Pre-selection of 21 female voices with glasgow accent aged 23 to 68 years
- Adaptation of the scottish AVM towards each of these 21 voices
- Selection of the 4 closest voice donors according to likelihood given the patient data
- The 2 AVMs were adapted to each of the 4 selected speakers leading to 8 adapted \bullet **AVMs**

Multiple AVM interpolation

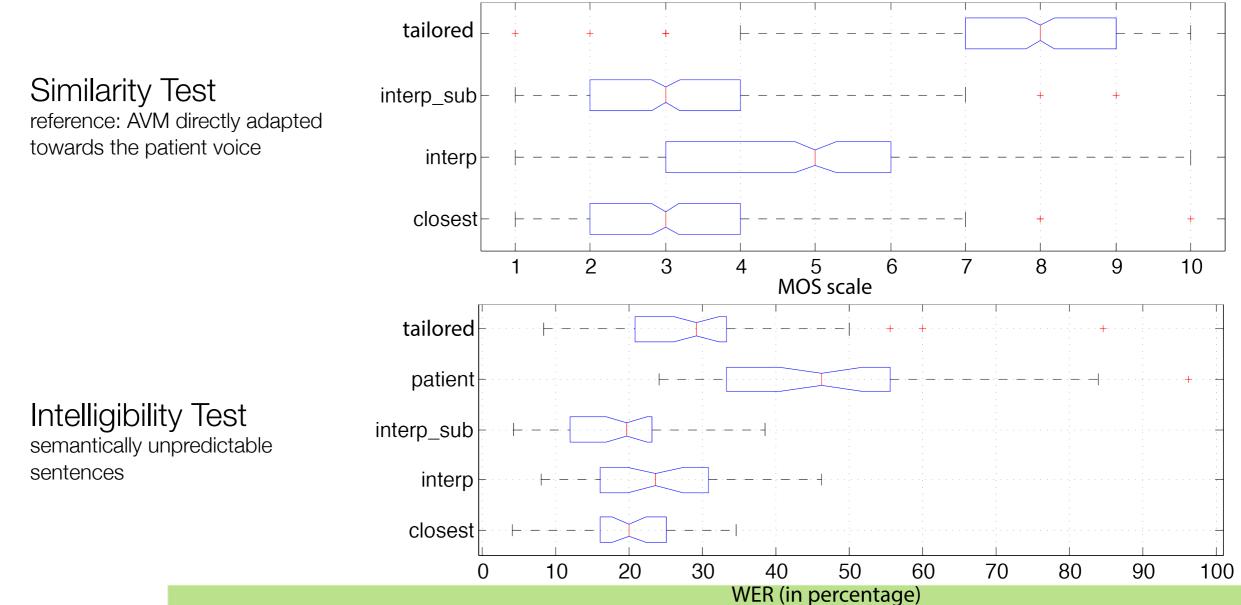
Edinburgh – Cambridge – Sheffield

Interpolation weights for each speaker and each stream

AVM.tgt	mcep	lf ₀	dlf_0	ddlf ₀	bap	-	AVM.tgt	d1	d2	d3	d 4	d5
Sco.378	1.39e-1	2.68e+4	1.83e+5	-7.94e+4	4.57e-1	-	Sco.378	1.26e+5	-2.06e+5	-4.24e+4	-7.53e+4	-3.54e+4
Eng.378	1.42e-1	4.84e+2	-2.10e+2	-1.31e+4	1.15e-1		Eng.378	-4.10e+3	1.07e+5	5.14e+4	7.33e+3	3.47e+4
Sco.573	5.91e-1	-2.32e+4	-1.55e+5	-9.11e+4	3.22e-1		Sco.573	-6.59e+4	-1.47e+5	-1.20e+4	7.80e+4	3.95e+4
Eng.573	-5.54e-2	4.47e+2	-2.54e+4	-3.69e+3	1.14e-1		Eng.573	-4.98e+2	-1.74e+5	-1.62e+5	-2.43e+5	-1.29e+4
Sco.044	8.97e-2	-1.73e+4	-2.07e+5	3.99e+4	-5.71e-2		Sco.044	4.62e+4	-7.35e+4	9.30e+4	1.31e+4	3.55e+2
Eng.044	-2.31e-3	4.34e+3	-7.77e+4	-1.77e+5	3.41e-2		Eng.044	4.10e+4	2.13e+5	1.66e+5	2.46e+4	-3.32e+4
Sco.185	4.76e-2	2.13e+4	2.56e+5	1.65e+5	2.03e-1		Sco.185	-1.01e+5	4.24e+5	-1.84e+4	2.52e+4	-7.37e+3
Eng.185	-1.94e-2	-8.35e+4	1.14e+5	1.07e+6	-1.41e-1		Eng.185	-4.39e+4	-1.17e+5	-8.84e+4	1.51e+5	2.93e+3

• the range of weights assigned to duration and f0 streams reveals the atypical characteristics of these patient's voice components;

• some voice symptoms have been reproduced during the interpolation despite having only a small degree of freedom



Multiple AVM interpolation

Edinburgh – Cambridge – Sheffield

Listening tests (38 listeners):

- closest: Scottish AVM adapted towards the closest voice donor
- interp: Multiple AVM interpolation
- interp sub: interp + substitution of f0, dlf0, ddlf0, dur from closest donors
- tailored: manually reconstructed by speech therapist

PINaturalSpeechTechnology

Edinburgh – Cambridge – Sheffield

- Perspectives
- Proof of concept is daily running in Anne Rowling Clinic
- Repaired voices delivered to 19 patients
- Assessment of the improvement in terms of Quality of Life
- Improving the voice repair process
- Spread out of the tools to company or communities / associations