

Edinburgh – Cambridge – Sheffield

Abstract

- HTK-ANN enables ANNs with a general structure for modelling and feature extraction in HTK.
- Include recent ANN techniques, e.g., sequence training speaker adaptation, and parameterised activation funct
- Fully integrated to HTK, to reuse existing GMM-HMN for ANN-HMMs.
- HTK-ANN has been tested at CUED on data sets range to 1,000 hours and will be released as part of HTK 3.

Design Principles

- To accomodate new models and methods, HTK-ANN sł designed should be as generic as possible
- Flexible input feature configurations.
- Generic ANN model architectures.
- HTK-ANN should be compatible with existing HTK fun
- To minimise the effort to reuse previous source code and tools.
- To simplify the transfer of many technologies.
- HTK-ANN should be "research friendly".

Generic ANN Support

- Each ANN can have any number of layers.
- The input vector to an ANN layer is defined by a feature mixture
- Each feature mixture has any number of *feature element*.
- A feature element defines a fragment of the input vector by sour features or ANN layers) and *context shift set* (integers for time
- ANNs can be any directed cyclic graph (recurrent ANNs) directed acyclic graphs (feedforward ANNs) can be train

t-6 t-3 t	Feature Element 1	Source: Input acoustic Context Shift Set: {-6,
t+3 t+6	Feature Element 2	Source: ANN 1, Layer Context Shift Set: {0}
t-1 t t+1	Feature Element 3	Source: ANN 2, Layer Context Shift Set: {-1,

A General ANN Extension for HTK Chao Zhang & Phil Woodland

ANN Training Facilities

acoustic g, stacking, ctions. M methods ging from 3 5 in 2015.	 (MMI, MPE) ANN labels confeature files (for a confeature files (for a confeature files) Only standard Gradient refine 	 HTK ANN has both frame level (CE, MN (MMI, MPE) training criteria. ANN labels come from frame-to-label alignes (for autoencoder), and lattice only standard EBP with SGD is available. Gradient refinement: momentum, graident clippe. Learning rate schedulers: List, Exponential Decarbob, etc. 		
	Frame based s	shuffling: CE/MMSE fo	or DI	
should be	 Utterance bas 	ed shuffling: MMI, MP rance level shuffling: R	PE, ai	
nctions	5 3 1		2	
	batch t	batch t		
		Figure: Examples of different	types o	
е.		Other Fea	ture	
<i>rce</i> (acoustic difference). ls) but only ned now.	Input transfor	CPU, MKL, and CUD ms: compatible with H cation: an ANN parame	TK S	

- tic features
- 6, -3, 0, 3, 6}

er 3, Outputs

er 2, Outputs

1, 0, 1}

- Model Edit (using HHEd)
- Insert/Remove/Initialise an ANN layer
- Add/Delete a feature element to a feature mixture
- Associate an ANN model to HMMs
- Decoders
- HVite: tandem/hybrid system decoding/alignment/model marking
- HDecode: tandem/hybrid system LVCSR decoding
- HDecode.mod: tandem/hybrid system model marking
- Joint decoder: log-linear combination of HTK systems (based on the same decision tree).

University of Cambridge

- MSE) and sequence level
- gnment (for CE & MMSE), ce files (for MMI & MPE). at present.
- ping, weight decay, *etc*.
- ay, Ada Grad, modified New

NN and (unfolded) RNN. ind MWE training. ASGD.

batch t

of data shuffling

es

ased new kernels for ANNs. SI/SD input transforms. unit online replacement.

Building Hybrid SI System

- Train ANN-HMMs based on CE (HNTrainSGD).
- Steps for CD-DNN-HMM MPE training
- Generate num. & den. lattices (HLRescore & HDecode).
- Phone mark num. & den. lattices (HVite or HDecode.mod).
- Perform MPE sequence training (HNTrainSGD).

ANN Front-ends for GMM-HMMs

- SD parameters are replaceable according to speaker ids.

Figure: A composite ANN as a Tandem SAT system front-end

System Hybrid S Hybrid S Tandem Hybrid SI \otimes Tar Tandem and Table:

UNIVERSITY OF CAMBRIDGE

Steps of building CE based SI CD-DNN-HMMs using HTK • Produce desired tied state GMM-HMMs by decision tree tying (HHEd). • Generate ANN-HMMs by replacing GMMs with an ANN (HHEd). • Generate frame-to-state labels with a pre-trained system (HVite).

• ANNs can be used as GMM-HMM front-ends by using a feature mixture to define the composition of the GMM-HMM input vector. • HTK can accomodate a tandem SAT system as a single system. Mean & variance normalisations are treated as activation functions.

Experiments

 Systems were trained on 200 hours NST MGB Challenge Data and evaluated on BBC 1week development set (manual segmentation). • DNNs are with 1k node hidden layers and 6k node output layers.

	Criterion	%WER				
51	CE	32.0				
51	MPE	28.8				
SI	MPE	29.7				
ndem SI	MPE	27.6				
d hybrid system performance.						