

Engineering and Physical Sciences Research Council

Edinburgh - Cambridge - Sheffield

Highlights from NST Systems for the MGB Challenge

Phil Woodland (Cambridge)

+ NST MGB Teams @ Cambridge, Edinburgh, Sheffield

http://www.natural-speech-technology.org

Overview

Edinburgh – Cambridge – Sheffield

- Lightly Supervised Alignment
 - reprocessing training data
- DNN-based Segmentation Methods
- Transcription
 - Multiple Acoustic Model Types & Acoustic Adaptation
 - RNNLMs and LM adaptation
 - Combination approaches
- Approaches to alignment
 - use of biased language model vs flexible alignment with WFST
- Diarisation Highlights

Lightly Supervised Alignment

- Reduce the text/audio alignment of complete shows (>6h) to the alignment of small segments;
- original and lightly supervised decoded transcripts are compared to detect reliable split points;
- improved acoustic models (AM) and segmenter can be traine on considering the obtained alignment and confidence measures

Natural Speech Technolog

Training Data 700h-v2

Edinburgh - Cambridge - Sheffield

 Re-run lightly supervised decoding on complete training set with improved DNN-based segmenter; better acoustic models (hybrid 700h-vl) increased LM bias (show)

System	LM	segmenter	%WER(del/ins)
T200	week biased	base-seg	35.0(16.9/4.5)
H200.v1	week biased	base-seg	29.1(16.4/3.3)
H200.v1	episode biased	base-seg	26.9(16.2/3.1)
H200.v1	episode biased	DNN-seg.v1	23.1(10.7/3.4)
H700.v1	episode biased	DNN-seg.v1	22.1(9.3/4.0)
H200.v1 H200.v1 H700.v1	episode biased episode biased episode biased	base-seg DNN-seg.v1 DNN-seg.v1	26.9(16.2/3.1) 23.1(10.7/3.4) 22.1(9.3/4.0)

- v2 has PMER=30 for 700h (cf PMER=40 for v1).
- HTK MGB eval Cambridge models and segmenter trained on 700h-v2
- Can repeat for v3, but no improvement in trained models (but can train on ASR output)

220 210

200 190

180

competitio

DNN-Based Segmentation

- About 4% absolute increase in WER if use baseline segmenter. (3.6% MS, 3.7% FA)
- New Speech/Non-speech DNN trained on PMER=0 v2 data
- Optimised large window size (55 frames) and architecture.
- Speech/Non-Speech followed by change-point detection and clustering to form segments
- Resulting segmenter reduces WER by 1.9% absolute (2.5% MS, 1.9% FA)
- Used for transcription, alignment & diarisation

Cambridge Acoustic Models

- Cambridge System tried to include a diverse set of acoustic models trained using both HTK and Kaldi
- HTK-based models:
 - sequence trained standard DNN hybrid
 - high performance Tandem system trained on improved DNN features
 - Tandem/Hybrid models combined in joint decoding (log-linear state level)
 - also adapted ReLU hybrid combined via CNC
- I.3% abs reduction in WER over sequence-trained hybrid from joint decoding

System	Criterion	%WER
SI Hybrid	CE	28.4
SI Hybrid	MPE	25.9
SI Tandem	MPE	27.0
Joint: Tandem \otimes Hybrid	MPE	24.6

Table 2: % WER on dev.full. LM1_{prune}, manual segmentation

Cambridge Kaldi-based Acoustic Models

- Kaldi acoustic models included to include more model types/diversity (all sequence trained)
 - DNN: std DNN
 - CNN: convolutional neural network best individual model
 - LSTM: long short-term memory recurrent network (combines well with others)
 - For MGB evaluation trained on 500h vI data (LSTM 250h). Since trained on 700h-v2
- Kaldi when combined with best HTK models (include adaptation)
 - reduce error by 0.5-0.6% abs in evaluation setup
 - reduces error by 1.1-1.2% abs with revised models
 - Combination with HTK uses common RNN language model and CNC

500h/250h-v1	WER	700h-v2	WER
system		system	
CNN (K00)	26.4	CNN (K10)	25.4
DNN (K01)	27.7	DNN (K11)	26.4
LSTM (K03)	31.1	LSTM (K12)	26.8
K00:K01	26.0	K10:K11	24.9
K00:K01:K03	25.7	K10:K11:K12	23.7

Table 4: WER (%) for the Kaldi CNN, DNN and LSTM systems & MBR combination represented by ":" (Auto segmentation, LM2).

Cambridge Acoustic Models: Adaptation

- Various types of unsupervised acoustic adaptation used:
 - CMLLR adapted features at input for Tandem/SAT models/stacked models
 - i-vector adaptation
 - p-ReLU adaptation (alters slope of activation function)
- p-ReLU adapted models
 - applied layer-by-layer
 - reduces WER by 1.1% over CMLLR

Input Transform	<i>p</i> -ReLU Adaptation	%WER
CMLLR	None	25.9
CMLLR	Bottom Layer	25.5
CMLLR	Bottom 3 Layers	25.0
CMLLR	Bottom 5 Layers	24.8

Table 5: %WER of 700h-v2 SA stacked hybrid system on dev.full.Automatic seg, 160k LM2

• combines well with other systems

Cambridge RNN Language Models

Edinburgh – Cambridge – Sheffield

- RNNLM trained on complete MGB training corpus
 - uses CUED-RNNLM GPU training
 - lattice rescoring from n-gram
 - Topic adaptation via latent Dirichlet allocation at input

		dev.full	
AM	LM	PPlex	%WER
	LM1	103.1	25.6
700hr-v1	LM1+RNN512	93.0	25.0
MPE hybrid	LM1+RNN512.lda	85.1	24.7
	LM1+RNN1024.lda	81.0	24.4
700hr-v1	LM2	108.6	24.9
MPE hybrid	LM2+RNN1024.lda	85.7	23.7

Table 3: 700h-v1 MPE hybrid acoustic models, manual segments

• **1.2 % abs reduction in WER** from topic-adapted RNNLM

RNNLM Adaptation (Sheffield)

Enburgi Canbridge a Sheffield Speech Technology

- RNNLM hybrid adaptation
 - Latent topics used as auxiliary features in the input layer
 - Linear Hidden Network (LHN) adaptation based on the genre labels

	WER
n–gram	30.1%
RNNLM	29.2%
LDA features	28.7%
Genre LHN	28.9%
Hybrid	28.6%

Poster session – S. Deena: Combining Feature and Model-Based Adaptation of RNNLMs for Multi-Genre Broadcast Speech Recognition

Sheffield Transcription

- Automatic speech segmentation with a DNN–HMM system
- Decoding with a DNN–HMM system with PLP–bMMI features
- Re-segmentation using the output of decoding
- Automatic clustering using BIC and PLP features
- Decoding with 3 separate systems (4-gram LMs)
 - 2 DNN-HMM systems (one with adapted features) and one adapted Tandem GMM-HMM with DNN-derived features
- System combination with ROVER
- Poster session O.Saz: The 2015 Sheffield System for Transcription of Multi–Genre Broadcast Media

Acoustic Domain Adaptation (Sheffield)

- DNN acoustic domain adaptation
 - Acoustic domains are inferred from training data using Latent Dirichlet Allocation (LDA)
 - An auxiliary vector with domain weights is used for adaptation for each segment

Output Lawren		
		WER
	Baseline	33.3%
Hidden Lay	SAT	31.4%
	LDaT	30.6%
Acoustic Features LDA Domain Code	LDaT+SAT	28.9%

Oral session – M. Doulaty: Latent Dirichlet Allocation Based Organisation of Broadcast Media Archives for Deep Neural Network Adaptation

Cambridge Alignment

- Uses system to generate training data alignments
 - Lightly supervised decoding using hybrid models
 - Modified due to no initial time-stamp information
 - Finally time align words Piecewise Alignment
 - Maximise precision using confidence-based filtering of output + comparing word times between aligned script & lightly supervised outputs (BI primary, B4 modified version using complete conf-net)

der

Data Selection

system	F	Precision	Recall	$N_{ m hyp}$	$N_{ m match}$
B1	0.9120	0.9283	0.8936	141,404	131,260
B4	0.9160	0.9311	0.9013	141,754	131,991

Poster session – The Development of the Cambridge University Alignment Systems for the Multi-Genre Broadcast Challenge¹³

Alignment System (Sheffield)

- Automatic speech segmentation, clustering and decoding with the Task 1 system
 - Interpolating background n—gram with subtitles n—gram for each show
 - DTW alignment of decoding output to show subtitles
 - Word–level time stamps using Viterbi forced alignment

Alignment highlights (Sheffield)

Edinburgh - Cambridge - Sheffield

- Selection of interpolation weights in lightly supervised decoding
 - Segments in a show are better covered by subtitles than others
 - SVM is used to estimate best interpolation weight per segment
 - Improves WER, but not F-measure

Poster session – B. Khaliq et al.: Segmentwise language model interpolation for lightly supervised alignment of broadcast ubtitles

Edinburgh/Quorate Alignment System

- Uses a factor automaton (or transducer) to apply strong text constraints during decoding limiting each utterance to substrings of the reference text (one per show in first pass).
 - Much improved decoding accuracy in difficult acoustic conditions
 - search space is highly constrained \rightarrow more efficient decoding
 - robust to insertions (words spoken but not in script) but not deletion (words in script but not spoken) – both are common in this data
- Second pass WFSTs are generated dynamically per utterance by selecting surrounding text, and word skips are allowed, giving robustness to deletions

Edinburgh Alignment (ctd)

Edinburgh - Cambridge - Sheffield

- Results show good performance
- Importance of adding second pass to boost recall

Sheffield Diarization

- Automatic speech segmentation with a DNN–HMM system
- Decoding with a DNN–HMM system with PLP–bMMI features
- Re-segmentation using the output of decoding
- Fine-tuning of the speech segmentation DNN using the show data
- Re-segmentation with the fine-tuned DNN-HMM system
- Automatic clustering using BIC and MFCC features
- Fine-tuning of a speaker separation DNN using the show data
- Re-clustering using DNN-HMM speaker separation system with the fine-tuned DNN
- Speaker linking using BIC and PLP features
- Poster session R. Milner et al. The 2015 Sheffield system for longitudinal diarisation of broadcast media

Diarization Highlights (Sheffield)

ationcerror

- Three-step speech segmentation leads to low s
 - 2-output DNN trained to separate speech from non-speech using 700 hours of acoustic training dataInitial
 - Decoding output is used to filter out areas of non-speech
 - The DNN is fine-tuned on the test data and speech is resegmented

	Miss	False	SER
DNN-HMM	4.1%	8.5%	12.6%
+ Decoding	6.7%	2.7%	9.4%
+DNN fine-tuning	4.4%	3.8%	8.2%

Poster session – R. Milner et al.: The 2015 Sheffield system for longitudinal diarisation of broadcast media

Cambridge Diarisation Approach

- Use segmenter developed for transcription
- Uses classic UBM-based representation of each cluster based on warped features
- Cross-likelihood ratio between clusters used as a distance measure for clustering
- Cross-episode linking applied after basic diarisation, and uses a complete linkage clustering between clusters

Edinburgh – Cambridge – Sheffield

Conclusions

Edinburgh – Cambridge – Sheffield

- Many systems developed for MGB as part of NST across range of NST tasks
- Improved segmentation algorithms are important
- Use of subtitle data and refined alignment for training
- Various types of acoustic model, adaptation and combination
- RNNLM applied to a large scale task with adaptation
- Different approaches to the alignment task
- Diarisation and linking used different techniques between sites
- Many posters that give more details!