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Overview
• Lightly Supervised Alignment

• reprocessing training data

• DNN-based Segmentation Methods

• Transcription

• Multiple Acoustic Model Types & Acoustic Adaptation

• RNNLMs and LM adaptation

• Combination approaches

• Approaches to alignment

• use of biased language model vs flexible alignment with WFST

• Diarisation Highlights
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Lightly Supervised Alignment
• Reduce the text/audio alignment of complete shows (>6h) to the 

alignment of small segments;

• original and lightly supervised decoded transcripts are compared to 
detect reliable split points;

• improved acoustic models (AM) and segmenter can be trained on data 
considering the obtained alignment and confidence measures
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•
Principle

� reduce the text/audio alignment of complete shows (>6h) to the
alignment of small segments;

� original and LS decoded transcripts are compared to detect reliable
split points;

�
improved acoustic models (AM) and segmenter can be trained on
data selection made considering the obtained alignment and
confidence measures
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Training Data 700h-v2
• Re-run lightly supervised decoding on complete training set with 

improved DNN-based segmenter;  
better acoustic models (hybrid 700h-v1)  
increased LM bias (show)
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Transcription Refinement
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v1

v2

v3

1. align raw transcriptions using Lightly Supervised approach
2. select data according to confidence measures (e.g Phone Matching Error

Rate)
3. train new Acoustic Models (AM) and segmenter on selection
4. repeat the procedure with improved AM and segmenter
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The Development of the Cambridge University Alignment Systems
for the Multi-Genre Broadcast Challenge

P. Lanchantin, M.J.F. Gales, P.Karanasou, X.Liu, Y.Qian, L.Wang, P.C. Woodland, C.Zhang
Cambridge University Engineering Department (CUED)

Summary
• Describe alignment systems both for data preparation for

participants in Multi-Genre Broadcast (MGB) challenge and
Cambridge system in transcription & alignment tasks

• Lightly supervised approach used for refining the original
transcripts provided to participants;

• Multiple refinements were used to improve the performance of
the baseline system for the MGB challenge alignment task.

Preparation of Distributed MGB Data

• Audio: 1600h of broadcast audio provided by BBC with subtitles.

• Di�erent genres: advice, childrens,comedy, competition, docu-
mentary, drama,events, news;

• broad range of environments and speaking styles.
• training set: 2193 episodes (1,580h), dev. set: 47 episodes (28h)

• Transcripts: closed captions for hearing impaired; quality vary
across genres in terms of precision of the alignment and reliability.
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• Segmenter: baseline segmenter from Cambridge RT-04 system
• Lightly supervised (LS) decoding week-based biased LM +

Tandem-SAT system trained on a 200h subset;
• Detection of split points original and decoded transcripts are

compared to detect split points. The text/audio segments ob-
tained are then force-aligned;

• Segment merging: if same speaker and segment inter-silence
duration Æ 200ms + maximum duration Æ 30s per segment;

• Measures for data selection: Average Word Duration (AWD);
Phone and Word Matched Error Rate (PMER and WMER) and
Confidence scores (CS) computed for each segment.

Second Iteration of Alignment Process

As part of our participation in the MGB transcription task, performed
another iteration (v2) of alignment process.

Various components of pipeline improved relative to v1 alignment:
• Stronger bias for the LM (episode instead of week-based);
• DNN-based segmenter;
• Better Acoustic Models trained on v1 transcript used:
• H200.v1: SI seq.-trained hybrid system based on a 200h selection;
• H700.v1: SI seq.-trained hybrid system based on a 700h selection.

System LM segmenter %WER(del/ins)
T200 week biased base-seg 35.0(16.9/4.5)
H200.v1 week biased base-seg 29.1(16.4/3.3)
H200.v1 episode biased base-seg 26.9(16.2/3.1)
H200.v1 episode biased DNN-seg.v1 23.1(10.7/3.4)
H700.v1 episode biased DNN-seg.v1 22.1(9.3/4.0)

Comparison with the v1 alignment:
• lower PMER for a 700h selection (30% vs 40%)
• more data with PMER=0%;
• di�erent distribution across genre;
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New improved components derived from v2 alignment:
• DNN speech/non-speech segmenter (DNN.seg-v2)

• trained on 209h of speech data with a PMER=0% using v2 tran-
scripts, and background data

• SI sequence-trained DNN hybrid (H700.v2) system
• SI Tandem (T700.v2) system

• Both trained on a 700h selection with PMERÆ30%.

MGB Alignment Task

• Participants supplied audio and script without time-stamps
• Task is find the precise start and end time of each word in the audio;
• Words could be removed from the original provided transcript but not

added (script-constrained):
• Assessment of alignment quality was based on the Precision (P ),

Recall (R) and F -measure.

P = Nmatch
Nhyp

, R = Nmatch
Nref

, F = 2 ◊ P ◊ R

P + R
(1)

Script 
(no t.s.)

Reference

System 
output

Text Alignment 
(Nref)

Text Alignment 
(Nhyp)

Matching 
100 ms window

(Nmatch)
Scoring
(P, R, F)

In our approach, we first aimed at maximising the Recall and then
applied selection schemes in order to increase the precision and the
target F -measure value:

Maximisation of Recall

system F Precision Recall Nhyp Nmatch
A1 0.8847 0.8577 0.9134 155,951 133,761
A2 0.8974 0.8594 0.9389 159,990 137,503

A1: alignment system used for production of v2 refined transcripts
A2: alignment system maximising the recall on the development set:
• DNN speech/non-speech segmenter (DNN.seg-v2) used;
• Lightly supervised decoding using the H700.v2 hybrid model and

force-alignment using the T700.v2 tandem model;
• Split point detection was modified according to task requirements (no

time stamps and linebreak provided).

Maximisation of Precision and F -measure

Precision and F -measure were maximised by applying di�erent selection
schemes to the aligned transcripts

Piecewise
Alignment

Data
Selection

system F Precision Recall Nhyp Nmatch
B1 0.9120 0.9283 0.8936 141,404 131,260
B4 0.9160 0.9311 0.9013 141,754 131,991

B1: submitted primary system
• comparison of the aligned script with the LS decoded transcripts
• filter out of deletions, substitution with CSÆ0.90 and matching

words with �t>250ms

B4: submited contrastive system maximising F -measure
• filter out words in aligned transcripts not appearing in confidence

network (CN) from LS decoding and matching words with �t>1s.

Conclusions
• Multiple refinements, including audio segmentation based

on deep neural networks (DNNs) and use of DNN-based
acoustic models used to improve performance over baseline sys-
tem that was used for preparation of MGB challenge data;

• Multiple iterations of alignment process useful for improve-
ment of both the segmenter and acoustic models.

• For the alignment task, first aimed at maximising the recall
and then improved the F -measure value by using di�erent se-
lection schemes based on confidence scores and on compar-
ison of aligned words with the lightly supervised decoded
transcript.

• Our system participated in the MGB challenge and achieved the
highest F -measure value on the MGB evaluation set.

• v2 has PMER=30 for 700h (cf PMER=40 for v1). 

• HTK MGB eval Cambridge models and 
segmenter trained on 700h-v2

• Can repeat for v3, but no improvement in 
trained models (but can train on ASR output)



DNN-Based Segmentation

• About 4% absolute increase in WER if use baseline segmenter. (3.6% MS, 
3.7% FA)

• New Speech/Non-speech DNN trained on PMER=0 v2 data
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• Optimised large window size (55 
frames) and architecture.

• Speech/Non-Speech followed by 
change-point detection and clustering 
to form segments

• Resulting segmenter reduces WER by 
1.9% absolute (2.5% MS, 1.9% FA)

• Used for transcription, alignment & 
diarisation

DNN structure %Training %Validation
accuracy accuracy

2200 ⇥ 2002 ⇥ 2 93.64 92.99
2200 ⇥ 2003 ⇥ 2 93.70 93.06
2200 ⇥ 2004 ⇥ 2 93.73 93.07
2200 ⇥ 2005 ⇥ 2 93.73 93.07
2200 ⇥ 2006 ⇥ 2 93.78 93.09
2200 ⇥ 2007 ⇥ 2 93.81 93.09
2200 ⇥ 2008 ⇥ 2 93.82 93.09
2200 ⇥ 1006 ⇥ 2 93.40 92.90
2200 ⇥ 4006 ⇥ 2 94.13 93.05

2200 ⇥ 400 ⇥ 2005 ⇥ 2 94.05 93.09
2200 ⇥ 1000 ⇥ 2005 ⇥ 2 94.40 93.11

Table 2. Classification accuracies of DNNs with different structures.
Mn means n hidden layers with M units in each layer.

described in Section 2.2 with the above configuration, was denoted
as DNN-v1.

3. SPEAKER SEGMENTATION AND CLUSTERING

After DNN-based speech/non-speech classification, the speech re-
gions are labelled at the frame level. For effective normalisation
and adaptation for speech recognition or other speaker-related pro-
cessing, the detected speech regions should be partitioned into ho-
mogeneous segments through a speaker segmentation and clustering
stage, with ideally one single speaker and one single background au-
dio condition in each segment. The overall segmentation process is
illustrated in Figure 1. The CPD and IAC stages draw on techniques
from the Cambridge March 2005 system [10].

Viterbi Decoding for DNN-based 
Speech/Non-speech Detection

FBK/PLP coding

Divergence-based 
Speaker Change Point Detection (CPD)

Internal 
silence threshold

Frame-level speech/non-speech labels

Over-segmented data

Modelling of Each Segment 
as a Single Gaussian

Viterbi Re-segmentation 
and Re-estimation

Threshold-based Clustering

Segmentation

Until convergence or max iterations

IAC

Fig. 1. The overall segmentation process for MGB challenge.

trained from original training set is used in the re-processing of the
BBC broadcast data to obtain a refined training set. Then, two other
segmenters are trained with the refined training set: DNN-v3 (only
with intra-segment non-speech) and DNN-v4 (with intra- and inter-
segment non-speech after speech filtering), the final automatic seg-
mentation system used in the challenge.

The rest of the paper is organised as follows. Section 2 describes
the DNN-based speech/non-speech detection stage, and a series of
experiments related to design of DNN structures are presented in de-
tails. The CPD and IAC stage is illustrated in Section 3, and the
segmenters trained with the original and refined training set are pre-
sented in Section 4. Finally, the segmentation performance of dif-
ferent segmenters on the development test set for the standard tran-
scription task dev.full (28h) is shown in Section 5.

2. DNN-BASED SPEECH/NON-SPEECH DETECTION

2.1. The DNN-HMM hybrid approach

A DNN is an MLP with a number of hidden layers, and its input is
usually formed from a stacked set of adjacent frames of the acoustic
feature vector. The input to each unit in a hidden layer is a weighted
sum of outputs from its previous layer, and each unit transforms the
input with a hidden activation function, e.g. the sigmoid function.
Finally, in the output layer, the inputs to each unit are normalised to
be the posterior probability of its associated class, e.g. using the soft-
max function. To interface a DNN with HMMs, the posterior prob-
abilities are converted to the log-likelihood generated by an HMM
state [26, 25].

We take this DNN-HMM hybrid approach in speech/non-speech
detection. DNNs are trained in a hybrid way using the frame-based
cross-entropy (CE) criterion with two softmax units in the output
layer corresponding to speech and non-speech. Posterior probabil-
ities are estimated by DNNs and converted to log-likelihood in the
normal way, and frame-wise decisions are made in a Viterbi decod-
ing framework with speech/non-speech HMMs that ensure a 2-frame
minimum duration.

2.2. Training data

The MGB Challenge provided participants with audio from seven
weeks of programmes with a raw total of 1,600 hours as the only
training dataset. A lightly supervised decoding process [35, 36] was
applied to the audio to extract time boundaries for utterances, and de-
tails of data preparation for the challenge can be found in [1, 37]. The
speech recogniser outputs for each recognised segments were com-
pared to the aligned transcripts, and an error rate computed between
them was obtained at either the word level (word matched error rate
or WMER) or the phone level (phone matched error rate, PMER).
The maximum MER/PMER, along with an average word duration
(AWD) threshold, was used to select data segments for training to
ensure that the word/phone supervision information is reasonably
accurate.

Initial segmenters was trained using a 100h subset of the original
training dataset, with AWD less than 0.7s and WMER less than 25.0
from lightly supervised alignment. Audio data of states other than
silence and short pause inside a segment was used as ‘speech’ data
(62h) to train DNN segmenters, and only intra-segment silence and
short pause were used as ‘non-speech’ data (38h).

2.3. DNN input context window size

Previous research shows that longer context windows are beneficial
for frame classification, and inputs of DNNs are generally composed
of feature vectors of several frames in the context window in speech
technologies. For example, 11 frames were used in [26]. Thus, we
have investigated performance of different input context windows,
and the frame-level classification accuracy has been chosen as the
evaluation measure in Table 1.

All DNNs in experiments of Section 2 take as inputs 40-dim fil-
terbank features (FBK), which are increasingly popular in speech
recognition and also used in acoustic modelling of our transcrip-
tion system for MGB challenge, and the feature vector of current
frame is extended with its preceding and succeeding frames. As to
the structure of DNNs in Table 1, there are 6 hidden layers, and
200 sigmoid units in each hidden layer. The DNNs were trained
with layer-wise discriminative pre-training and fine-tuning [25], and
a randomly-selected 10% of training data was held-out as validation
data. All following DNN segmentation and recognition experiments
were performed using HTK V3.5 [39].

Input context %Training %Validation
window size accuracy accuracy

9 frames 91.34 90.98
15 frames 92.51 92.08
23 frames 93.29 92.75
31 frames 93.44 92.87
39 frames 93.61 92.98
47 frames 93.70 93.07
55 frames 93.78 93.09
63 frames 93.80 93.08

Table 1. Classification accuracies of DNNs with different sizes of
the input context window.

Then the size of the input context window for all DNNs was set
to 55 frames afterwards.

Fig. 1. Illustration of the overall segmentation process.

The CPD step finds potential changes in audio characteristics
within each segment using the symmetric divergence distance metric
(KL2) between two adjacent sliding windows of two seconds length.
A full covariance Gaussian is used for each window, and a left-to-
right search of local maxima is launched, removing the smaller of

any pairs of neighbouring peaks occurring within a specified mini-
mum duration. It was shown that enforcing a minimum length con-
straint of one second on the resulting segments reduced the segment
impurity. A distance threshold is then chosen to over-segment the
data. An internal silence threshold is set to discard larger silence
portions and generate new segments with speech between these si-
lences. The effect of the internal silence threshold on missed and
false alarmed speech rates as well as word error rates (WER) of tran-
scription systems will be shown in Section 5.

A bottom-up IAC step is then applied to the over-segmented
data. For each iteration, a single Gaussian model is built for each
segment and a new segment is formed by the two neighbouring seg-
ments with the smallest likelihood loss after merging. This proce-
dure is repeated until a threshold of likelihood loss on merging is
reached. Then re-segmentation of the data is performed by the Gaus-
sian models using Viterbi decoding. The whole process is repeated
until the segmentation converges or a maximum number of iterations
are reached.

Finally, a maximum of 20 frames of silence (ensuring no over-
lapping segments) are added to the start and end of each segment to
facilitate subsequent processing.

4. THE SEGMENTATION SYSTEMS

4.1. Refinement of the training dataset

The initial DNN-v1 based segmenter including CPD and IAC (the
internal silence threshold was set to 50 frames) used the proce-
dures in the previous sections, and the training data for DNN-v1 as
detailed in Section 2.2. This segmenter was again applied to the
whole MGB training set, which then went through another round
of improved lightly supervised alignment with better acoustic and
language models as described in [28]. The refined alignment re-
sulted in a much larger amount of training data with PMER equal to
zero, which therefore, allows us to use only this as a training set for
frame-based DNN segmenters while giving sufficient training data
and good frame alignment for speech/non-speech. This choice of
data led to a 209h set of audio when AWD was limited to between
0.165s and 0.66s and PMER of zero was used. This data was then
used as the basis for training further DNN-based segmenters.

4.2. Choosing background speech data

With the refined training data selection and alignments, two other
segmenters, DNN-v3 and DNN-v4, both the same configuration as
DNN-v1, were trained. Just as for DNN-v1, the audio data aligned
to speech HMM states is used as ‘speech’ data (173h). DNN-v3 uses
only audio data aligned to silence and short pause states inside a seg-
ment as ‘non-speech’ data (37h), while DNN-v4 uses a large sam-
ple of inter-segment non-speech data as well (313h). For DNN-v4,
the potential speech portions outside aligned segments was filtered
using a previously trained DNN segmenter1, since it is known that
some of the data not included in the BBC subtitles will in fact in-
clude speech data. It was found that the performance of the system
is much poorer if a significant portion of data labelled as non-speech
is actually speech.

The frame-level classification rates of these DNN segmenters
are listed in Table 3 for different training and validation sets.

1For quick turnaround the segmenter used for background filtering was
trained on the development set, but later experiments with a filtering DNN
trained on the training set led to very similar performance.



Cambridge Acoustic Models
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• Cambridge System tried to include a diverse set of acoustic models trained 
using both HTK and Kaldi

• HTK-based models:

•  sequence trained standard DNN hybrid

• high performance Tandem system trained on improved DNN features

• Tandem/Hybrid models combined in joint decoding (log-linear state level)

• also adapted ReLU hybrid combined via CNC

Cambridge University Transcription Systems for the
Multi-Genre Broadcast Challenge: Updated Results

Phil Woodland, Xunying Liu, Yanmin Qian, Chao Zhang, Mark Gales, Penny Karanasou, Pierre Lanchantin, Linlin Wang

Cambridge University Engineering Department, Cambridge, UK, CB2 1PZ

Abstract

I HTK 3.5 for building DNN-based hybrid + tandem
acoustic models: used in joint decoding framework

I DNN-based audio segmenter
I RNNLMs and RNNLM adaptation
I Adaptation of DNN based acoustic models including

parameterised activation function adaptation
I Alternative acoustic models built using Kaldi
I Combined HTK & Kaldi models (same LMs)
I Systems had lowest error rates on MGB evaluation

data
I Results from updated Kaldi systems included:

further reduce error rate of combined systems

MGB Data

I 7 weeks BBC TV data: 1600h raw audio + subtitles
I Distributed v1 lightly supervised output with Phone

Matched Error Rate (PMER)
I 700h-v1 used initially for HTK systems
I Entire audio reprocessed (see alignment poster)
I Lower PMER same quantity: 700h-v2 selection
I Subtitles as transcripts (changed seg boundaries)
I 650 MW subtitles for LM training + 10 MW

transcripts

Two tasks:
I Task1: Standard Transcription
I Task3: Longitudinal Trans. (deadline 1 week later!)

Dev/eval sets:
I Task1: dev.full 28h; eval.std 11h
I Task 3: dev.long 12h/5 series; eval.long 14h/2

series

N-Gram Language Models

I Initial experiments with 64k vocab pruned 4-gram
I 0.8% abs lower OOV rate with 160k vocab
I 1% abs lower WER with large 160k model

Vocab dev.full
AM LM Size %OOV PPlex %WER

700hr-v1 LM1prune 64k 1.2 108.7 25.9
hybrid LM1 103.1 25.6

700hr-v1 LM2prune 160k 0.4 114.4 25.3
hybrid LM2 108.6 24.9

Table 1: Baseline 4-gram LMs on dev.full using 700hr-v1 based
hybrid acoustic models and manual segmentation.

700h-v1 systems

I DNN hybrid systems: 720 ⇥ 10006 ⇥ 9500 sigmoid
I 39-d Bottleneck features (ReLU DNN) for Tandem
I Tandem systems share same decision tree
I State-level log-likelihood combination

I single decode (joint-decoding)

System Criterion %WER
SI Hybrid CE 28.4
SI Hybrid MPE 25.9

SI Tandem MPE 27.0
Joint: Tandem ⌦ Hybrid MPE 24.6

Table 2: % WER on dev.full. LM1prune, manual segmentation

I Joint decoding: 1.3% abs over MPE hybrid

RNNLMs and RNNLM Topic Adaptation

I 64k vocabulary, either 512/1024 recurrent layer
I Adaptation via auxiliary real input features (added

to binary 1-of-k encoding of current word)
I Latent Dirichlet allocation: 30-d topic vectors
I Used in RNNLM training & after 1st-pass decoding

dev.full
AM LM PPlex %WER

LM1 103.1 25.6
700hr-v1 LM1+RNN512 93.0 25.0

MPE hybrid LM1+RNN512.lda 85.1 24.7
LM1+RNN1024.lda 81.0 24.4

700hr-v1 LM2 108.6 24.9
MPE hybrid LM2+RNN1024.lda 85.7 23.7
Table 3: 700h-v1 MPE hybrid acoustic models, manual segments

I Topic adapted RNNLM: 1.2% abs lower WER

HTK-based 700h-v2 systems

I 700h-v2 sys 0.4%-0.7% lower WER than 700h-v1
I Hybrid systems with 1k hidden, 9.5k outputs
I Hybrid systems with 2k hidden 12k outputs
I CMLLR SAT Tandem system
I Stacked ReLU system (adapted PLP & BN features)

Automatic Segmentation

I 4% abs increase in WER with baseline segmenter
I DNN speech/non-speech with wide (55 frame) input
I Change-point detection/clustering applied
I Still 2.1% higher than manual segmentation!

Kaldi Systems

I Kaldi 500h-v1 data used in actual eval (LSTM 250h)
I Since updated using 700h-v2 data for all models
I DNN: 700h-v1: 6 hidden⇥1024 (sigmoid) 10.5k o/p

700h-v2: 6 hidden⇥1024 (sigmoid) 11.5k o/p
I CNN: 700h-v1: Frequency-based 1-d CNN. 2 conv.

hidden & 4 DNN hidden (1024); 9k outputs
700h-v2: 11.5k outputs

I LSTM: 700h-v1: 2 LSTM hidden layers (512 cells),
200 unit projection layer. 9k outputs.
700h-v2: 2 LSTM hidden layers (1024 cells), 512
projection; 11.5k outputs

I Input: Filterbank + pitch + � + �� (43x3 per frame)
I RBM pre-training + fine-tuning + sequence training

500h/250h-v1 WER 700h-v2 WER
system system

CNN (K00) 26.4 CNN (K10) 25.4
DNN (K01) 27.7 DNN (K11) 26.4
LSTM (K03) 31.1 LSTM (K12) 26.8

K00:K01 26.0 K10:K11 24.9
K00:K01:K03 25.7 K10:K11:K12 23.7

Table 4: WER (%) for the Kaldi CNN, DNN and LSTM systems &
MBR combination represented by ":" (Auto segmentation, LM2).

I CNN best single system
I LSTM gives good combination gains (esp 700h-v2)
I 700h-v2 models reduce combined WER by 2% abs
I Lattice regen can improve WER slightly (500h-v1)

DNN Activation FunctionAdaptation

I Based on parameterised p�ReLU activation fns
I Scales slope of activation functions
I Adaptation at sequence level (CE criterion)
I Adaptation applied layer-by-layer
I Applied to stacked hybrid system

Input Transform p�ReLU Adaptation %WER
CMLLR None 25.9
CMLLR Bottom Layer 25.5
CMLLR Bottom 3 Layers 25.0
CMLLR Bottom 5 Layers 24.8

Table 5: %WER of 700h-v2 SA stacked hybrid system on dev.full.
Automatic seg, 160k LM2prune

I p�ReLU adaptation gives a further 1.1% absolute
WER reduction over CMLLR

Systems for the initial Task 1 evaluation

ID System LM dev.full eval.std
H00 9.5k 700h-v1 SI RNN512.lda 25.0 26.0
H04 Joint 12k 700-v2 RNN1024.lda 23.5 24.1

K00:K01:K03 LM2 25.7 26.7
H04+K00:K01:K03 — 23.0 23.7

H06 p-RELU adapt RNN1024.lda 23.9 —
H04 � H06 RNN1024.lda 22.4 22.8

Table 6: Systems for the initial Task 1 evaluation.

I System H00 used for adaptation of further systems.
I H04: joint system of tandem SAT + SI hybrid models
I combination: � conf net; ’+’ ROVER; & ’:’ Kaldi MBR.
I 23.7% Cambridge official eval.std Task 1 WER
I 22.8% combining H04 and H06 (p-ReLU adapt)

Improved Results Task 1 & Kaldi Updates

ID System dev.full eval.std
H10 9.5k SI 23.9 —
H11 Joint 12k 23.3 —
H12 p-ReLU adapt 23.7 —

H11�H12 22.3 —
H13 joint 9.5k ivec 23.4 —
K07 250h-v1 LSTM 31.2 —
K08 500h-v1 CNN regen 25.5 —
K09 500h-v1 DNN regen 26.6 —

K08�K09�K07 25.0 —
H11�H12�K08 21.8 —

H11�H12�H13�K08�K09�K07 21.7 22.1
K10R 700h-v2 CNN 24.6 —
K11R 700h-v2 DNN 25.6 —
K12R 700h-v2 LSTM 25.7 —

K10R�K11R�K12R 23.3 24.1
H11�H12�K10R 21.6 22.2

H11�H12�K10R�K12R 21.1 21.7
Table 7: WER (%) on dev.full , and a subset eval.std

I All HTK-based systems trained on 700h-v2.
I System H10 used for adaptation of further systems.
I H11 is a joint system using tandem SAT & SI hybrid
I All systems: LM2+RNN1024.lda, CN decoding/CNC

H11�H12�H13�K08�K09�K07
I primary for Task 3: 19.7% / 19.3% on dev/eval.long
I 1.6% abs lower on eval.std than Task 1 primary.

Updated Kaldi Systems in best combination
I Lower WER dev.full / eval.std: 0.6% / 0.4% abs
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• 1.3% abs reduction in WER 
over sequence-trained 
hybrid from joint decoding



Cambridge Kaldi-based  
Acoustic Models
• Kaldi acoustic models included to include more model types/diversity (all sequence 

trained)

• DNN: std DNN

• CNN: convolutional neural network - best individual model

• LSTM: long short-term memory recurrent  network (combines well with others)

• For MGB evaluation trained on 500h v1 data (LSTM 250h). Since trained on 700h-v2
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• Kaldi when combined with best HTK 
models (include adaptation)

• reduce error by 0.5-0.6% abs in 
evaluation setup

• reduces error by 1.1-1.2% abs with 
revised models

• Combination with HTK uses 
common RNN language model and 
CNC 
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Abstract

I HTK 3.5 for building DNN-based hybrid + tandem
acoustic models: used in joint decoding framework

I DNN-based audio segmenter
I RNNLMs and RNNLM adaptation
I Adaptation of DNN based acoustic models including

parameterised activation function adaptation
I Alternative acoustic models built using Kaldi
I Combined HTK & Kaldi models (same LMs)
I Systems had lowest error rates on MGB evaluation

data
I Results from updated Kaldi systems included:

further reduce error rate of combined systems

MGB Data

I 7 weeks BBC TV data: 1600h raw audio + subtitles
I Distributed v1 lightly supervised output with Phone

Matched Error Rate (PMER)
I 700h-v1 used initially for HTK systems
I Entire audio reprocessed (see alignment poster)
I Lower PMER same quantity: 700h-v2 selection
I Subtitles as transcripts (changed seg boundaries)
I 650 MW subtitles for LM training + 10 MW

transcripts

Two tasks:
I Task1: Standard Transcription
I Task3: Longitudinal Trans. (deadline 1 week later!)

Dev/eval sets:
I Task1: dev.full 28h; eval.std 11h
I Task 3: dev.long 12h/5 series; eval.long 14h/2

series

N-Gram Language Models

I Initial experiments with 64k vocab pruned 4-gram
I 0.8% abs lower OOV rate with 160k vocab
I 1% abs lower WER with large 160k model

Vocab dev.full
AM LM Size %OOV PPlex %WER

700hr-v1 LM1prune 64k 1.2 108.7 25.9
hybrid LM1 103.1 25.6

700hr-v1 LM2prune 160k 0.4 114.4 25.3
hybrid LM2 108.6 24.9

Table 1: Baseline 4-gram LMs on dev.full using 700hr-v1 based
hybrid acoustic models and manual segmentation.

700h-v1 systems

I DNN hybrid systems: 720 ⇥ 10006 ⇥ 9500 sigmoid
I 39-d Bottleneck features (ReLU DNN) for Tandem
I Tandem systems share same decision tree
I State-level log-likelihood combination

I single decode (joint-decoding)

System Criterion %WER
SI Hybrid CE 28.4
SI Hybrid MPE 25.9

SI Tandem MPE 27.0
Joint: Tandem ⌦ Hybrid MPE 24.6

Table 2: % WER on dev.full. LM1prune, manual segmentation

I Joint decoding: 1.3% abs over MPE hybrid

RNNLMs and RNNLM Topic Adaptation

I 64k vocabulary, either 512/1024 recurrent layer
I Adaptation via auxiliary real input features (added

to binary 1-of-k encoding of current word)
I Latent Dirichlet allocation: 30-d topic vectors
I Used in RNNLM training & after 1st-pass decoding

dev.full
AM LM PPlex %WER

LM1 103.1 25.6
700hr-v1 LM1+RNN512 93.0 25.0

MPE hybrid LM1+RNN512.lda 85.1 24.7
LM1+RNN1024.lda 81.0 24.4

700hr-v1 LM2 108.6 24.9
MPE hybrid LM2+RNN1024.lda 85.7 23.7
Table 3: 700h-v1 MPE hybrid acoustic models, manual segments

I Topic adapted RNNLM: 1.2% abs lower WER

HTK-based 700h-v2 systems

I 700h-v2 sys 0.4%-0.7% lower WER than 700h-v1
I Hybrid systems with 1k hidden, 9.5k outputs
I Hybrid systems with 2k hidden 12k outputs
I CMLLR SAT Tandem system
I Stacked ReLU system (adapted PLP & BN features)

Automatic Segmentation

I 4% abs increase in WER with baseline segmenter
I DNN speech/non-speech with wide (55 frame) input
I Change-point detection/clustering applied
I Still 2.1% higher than manual segmentation!

Kaldi Systems

I Kaldi 500h-v1 data used in actual eval (LSTM 250h)
I Since updated using 700h-v2 data for all models
I DNN: 700h-v1: 6 hidden⇥1024 (sigmoid) 10.5k o/p

700h-v2: 6 hidden⇥1024 (sigmoid) 11.5k o/p
I CNN: 700h-v1: Frequency-based 1-d CNN. 2 conv.

hidden & 4 DNN hidden (1024); 9k outputs
700h-v2: 11.5k outputs

I LSTM: 700h-v1: 2 LSTM hidden layers (512 cells),
200 unit projection layer. 9k outputs.
700h-v2: 2 LSTM hidden layers (1024 cells), 512
projection; 11.5k outputs

I Input: Filterbank + pitch + � + �� (43x3 per frame)
I RBM pre-training + fine-tuning + sequence training

500h/250h-v1 WER 700h-v2 WER
system system

CNN (K00) 26.4 CNN (K10) 25.4
DNN (K01) 27.7 DNN (K11) 26.4
LSTM (K03) 31.1 LSTM (K12) 26.8

K00:K01 26.0 K10:K11 24.9
K00:K01:K03 25.7 K10:K11:K12 23.7

Table 4: WER (%) for the Kaldi CNN, DNN and LSTM systems &
MBR combination represented by ":" (Auto segmentation, LM2).

I CNN best single system
I LSTM gives good combination gains (esp 700h-v2)
I 700h-v2 models reduce combined WER by 2% abs
I Lattice regen can improve WER slightly (500h-v1)

DNN Activation FunctionAdaptation

I Based on parameterised p�ReLU activation fns
I Scales slope of activation functions
I Adaptation at sequence level (CE criterion)
I Adaptation applied layer-by-layer
I Applied to stacked hybrid system

Input Transform p�ReLU Adaptation %WER
CMLLR None 25.9
CMLLR Bottom Layer 25.5
CMLLR Bottom 3 Layers 25.0
CMLLR Bottom 5 Layers 24.8

Table 5: %WER of 700h-v2 SA stacked hybrid system on dev.full.
Automatic seg, 160k LM2prune

I p�ReLU adaptation gives a further 1.1% absolute
WER reduction over CMLLR

Systems for the initial Task 1 evaluation

ID System LM dev.full eval.std
H00 9.5k 700h-v1 SI RNN512.lda 25.0 26.0
H04 Joint 12k 700-v2 RNN1024.lda 23.5 24.1

K00:K01:K03 LM2 25.7 26.7
H04+K00:K01:K03 — 23.0 23.7

H06 p-RELU adapt RNN1024.lda 23.9 —
H04 � H06 RNN1024.lda 22.4 22.8

Table 6: Systems for the initial Task 1 evaluation.

I System H00 used for adaptation of further systems.
I H04: joint system of tandem SAT + SI hybrid models
I combination: � conf net; ’+’ ROVER; & ’:’ Kaldi MBR.
I 23.7% Cambridge official eval.std Task 1 WER
I 22.8% combining H04 and H06 (p-ReLU adapt)

Improved Results Task 1 & Kaldi Updates

ID System dev.full eval.std
H10 9.5k SI 23.9 —
H11 Joint 12k 23.3 —
H12 p-ReLU adapt 23.7 —

H11�H12 22.3 —
H13 joint 9.5k ivec 23.4 —
K07 250h-v1 LSTM 31.2 —
K08 500h-v1 CNN regen 25.5 —
K09 500h-v1 DNN regen 26.6 —

K08�K09�K07 25.0 —
H11�H12�K08 21.8 —

H11�H12�H13�K08�K09�K07 21.7 22.1
K10R 700h-v2 CNN 24.6 —
K11R 700h-v2 DNN 25.6 —
K12R 700h-v2 LSTM 25.7 —

K10R�K11R�K12R 23.3 24.1
H11�H12�K10R 21.6 22.2

H11�H12�K10R�K12R 21.1 21.7
Table 7: WER (%) on dev.full , and a subset eval.std

I All HTK-based systems trained on 700h-v2.
I System H10 used for adaptation of further systems.
I H11 is a joint system using tandem SAT & SI hybrid
I All systems: LM2+RNN1024.lda, CN decoding/CNC

H11�H12�H13�K08�K09�K07
I primary for Task 3: 19.7% / 19.3% on dev/eval.long
I 1.6% abs lower on eval.std than Task 1 primary.

Updated Kaldi Systems in best combination
I Lower WER dev.full / eval.std: 0.6% / 0.4% abs
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Cambridge Acoustic Models: 
Adaptation

• Various types of unsupervised acoustic adaptation used:

• CMLLR adapted features at input for Tandem/SAT models/stacked models

• i-vector adaptation

• p-ReLU adaptation (alters slope of activation function)
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• p-ReLU adapted models

• applied layer-by-layer

• reduces WER by 1.1% over 
CMLLR

• combines well with other systems
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Abstract

I HTK 3.5 for building DNN-based hybrid + tandem
acoustic models: used in joint decoding framework

I DNN-based audio segmenter
I RNNLMs and RNNLM adaptation
I Adaptation of DNN based acoustic models including

parameterised activation function adaptation
I Alternative acoustic models built using Kaldi
I Combined HTK & Kaldi models (same LMs)
I Systems had lowest error rates on MGB evaluation

data
I Results from updated Kaldi systems included:

further reduce error rate of combined systems

MGB Data

I 7 weeks BBC TV data: 1600h raw audio + subtitles
I Distributed v1 lightly supervised output with Phone

Matched Error Rate (PMER)
I 700h-v1 used initially for HTK systems
I Entire audio reprocessed (see alignment poster)
I Lower PMER same quantity: 700h-v2 selection
I Subtitles as transcripts (changed seg boundaries)
I 650 MW subtitles for LM training + 10 MW

transcripts

Two tasks:
I Task1: Standard Transcription
I Task3: Longitudinal Trans. (deadline 1 week later!)

Dev/eval sets:
I Task1: dev.full 28h; eval.std 11h
I Task 3: dev.long 12h/5 series; eval.long 14h/2

series

N-Gram Language Models

I Initial experiments with 64k vocab pruned 4-gram
I 0.8% abs lower OOV rate with 160k vocab
I 1% abs lower WER with large 160k model

Vocab dev.full
AM LM Size %OOV PPlex %WER

700hr-v1 LM1prune 64k 1.2 108.7 25.9
hybrid LM1 103.1 25.6

700hr-v1 LM2prune 160k 0.4 114.4 25.3
hybrid LM2 108.6 24.9

Table 1: Baseline 4-gram LMs on dev.full using 700hr-v1 based
hybrid acoustic models and manual segmentation.

700h-v1 systems

I DNN hybrid systems: 720 ⇥ 10006 ⇥ 9500 sigmoid
I 39-d Bottleneck features (ReLU DNN) for Tandem
I Tandem systems share same decision tree
I State-level log-likelihood combination

I single decode (joint-decoding)

System Criterion %WER
SI Hybrid CE 28.4
SI Hybrid MPE 25.9

SI Tandem MPE 27.0
Joint: Tandem ⌦ Hybrid MPE 24.6

Table 2: % WER on dev.full. LM1prune, manual segmentation

I Joint decoding: 1.3% abs over MPE hybrid

RNNLMs and RNNLM Topic Adaptation

I 64k vocabulary, either 512/1024 recurrent layer
I Adaptation via auxiliary real input features (added

to binary 1-of-k encoding of current word)
I Latent Dirichlet allocation: 30-d topic vectors
I Used in RNNLM training & after 1st-pass decoding

dev.full
AM LM PPlex %WER

LM1 103.1 25.6
700hr-v1 LM1+RNN512 93.0 25.0

MPE hybrid LM1+RNN512.lda 85.1 24.7
LM1+RNN1024.lda 81.0 24.4

700hr-v1 LM2 108.6 24.9
MPE hybrid LM2+RNN1024.lda 85.7 23.7
Table 3: 700h-v1 MPE hybrid acoustic models, manual segments

I Topic adapted RNNLM: 1.2% abs lower WER

HTK-based 700h-v2 systems

I 700h-v2 sys 0.4%-0.7% lower WER than 700h-v1
I Hybrid systems with 1k hidden, 9.5k outputs
I Hybrid systems with 2k hidden 12k outputs
I CMLLR SAT Tandem system
I Stacked ReLU system (adapted PLP & BN features)

Automatic Segmentation

I 4% abs increase in WER with baseline segmenter
I DNN speech/non-speech with wide (55 frame) input
I Change-point detection/clustering applied
I Still 2.1% higher than manual segmentation!

Kaldi Systems

I Kaldi 500h-v1 data used in actual eval (LSTM 250h)
I Since updated using 700h-v2 data for all models
I DNN: 700h-v1: 6 hidden⇥1024 (sigmoid) 10.5k o/p

700h-v2: 6 hidden⇥1024 (sigmoid) 11.5k o/p
I CNN: 700h-v1: Frequency-based 1-d CNN. 2 conv.

hidden & 4 DNN hidden (1024); 9k outputs
700h-v2: 11.5k outputs

I LSTM: 700h-v1: 2 LSTM hidden layers (512 cells),
200 unit projection layer. 9k outputs.
700h-v2: 2 LSTM hidden layers (1024 cells), 512
projection; 11.5k outputs

I Input: Filterbank + pitch + � + �� (43x3 per frame)
I RBM pre-training + fine-tuning + sequence training

500h/250h-v1 WER 700h-v2 WER
system system

CNN (K00) 26.4 CNN (K10) 25.4
DNN (K01) 27.7 DNN (K11) 26.4
LSTM (K03) 31.1 LSTM (K12) 26.8

K00:K01 26.0 K10:K11 24.9
K00:K01:K03 25.7 K10:K11:K12 23.7

Table 4: WER (%) for the Kaldi CNN, DNN and LSTM systems &
MBR combination represented by ":" (Auto segmentation, LM2).

I CNN best single system
I LSTM gives good combination gains (esp 700h-v2)
I 700h-v2 models reduce combined WER by 2% abs
I Lattice regen can improve WER slightly (500h-v1)

DNN Activation FunctionAdaptation

I Based on parameterised p�ReLU activation fns
I Scales slope of activation functions
I Adaptation at sequence level (CE criterion)
I Adaptation applied layer-by-layer
I Applied to stacked hybrid system

Input Transform p�ReLU Adaptation %WER
CMLLR None 25.9
CMLLR Bottom Layer 25.5
CMLLR Bottom 3 Layers 25.0
CMLLR Bottom 5 Layers 24.8

Table 5: %WER of 700h-v2 SA stacked hybrid system on dev.full.
Automatic seg, 160k LM2prune

I p�ReLU adaptation gives a further 1.1% absolute
WER reduction over CMLLR

Systems for the initial Task 1 evaluation

ID System LM dev.full eval.std
H00 9.5k 700h-v1 SI RNN512.lda 25.0 26.0
H04 Joint 12k 700-v2 RNN1024.lda 23.5 24.1

K00:K01:K03 LM2 25.7 26.7
H04+K00:K01:K03 — 23.0 23.7

H06 p-RELU adapt RNN1024.lda 23.9 —
H04 � H06 RNN1024.lda 22.4 22.8

Table 6: Systems for the initial Task 1 evaluation.

I System H00 used for adaptation of further systems.
I H04: joint system of tandem SAT + SI hybrid models
I combination: � conf net; ’+’ ROVER; & ’:’ Kaldi MBR.
I 23.7% Cambridge official eval.std Task 1 WER
I 22.8% combining H04 and H06 (p-ReLU adapt)

Improved Results Task 1 & Kaldi Updates

ID System dev.full eval.std
H10 9.5k SI 23.9 —
H11 Joint 12k 23.3 —
H12 p-ReLU adapt 23.7 —

H11�H12 22.3 —
H13 joint 9.5k ivec 23.4 —
K07 250h-v1 LSTM 31.2 —
K08 500h-v1 CNN regen 25.5 —
K09 500h-v1 DNN regen 26.6 —

K08�K09�K07 25.0 —
H11�H12�K08 21.8 —

H11�H12�H13�K08�K09�K07 21.7 22.1
K10R 700h-v2 CNN 24.6 —
K11R 700h-v2 DNN 25.6 —
K12R 700h-v2 LSTM 25.7 —

K10R�K11R�K12R 23.3 24.1
H11�H12�K10R 21.6 22.2

H11�H12�K10R�K12R 21.1 21.7
Table 7: WER (%) on dev.full , and a subset eval.std

I All HTK-based systems trained on 700h-v2.
I System H10 used for adaptation of further systems.
I H11 is a joint system using tandem SAT & SI hybrid
I All systems: LM2+RNN1024.lda, CN decoding/CNC

H11�H12�H13�K08�K09�K07
I primary for Task 3: 19.7% / 19.3% on dev/eval.long
I 1.6% abs lower on eval.std than Task 1 primary.

Updated Kaldi Systems in best combination
I Lower WER dev.full / eval.std: 0.6% / 0.4% abs
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Cambridge RNN Language 
Models

• RNNLM trained on complete MGB 
training corpus

• uses CUED-RNNLM GPU training

• lattice rescoring from n-gram

• Topic adaptation via latent 
Dirichlet allocation at input  

9

• 1.2 % abs reduction in WER from 
topic-adapted RNNLM

into the input layer. The hidden layer compresses the infor-
mation from these two inputs and computes a new representa-
tion vi−1 using a sigmoid activation to achieve non-linearity.
This is then passed to the output layer to produce normalized
RNNLM probabilities using a softmax activation, as well as re-
cursively fed back into the input layer as the “future” remaining
history to compute the LM probability for the following word
PRNN(wi+1|wi, vi−1).

Input layer

.
.
.

.
.
.

.
.
.

����input�node

sigmoid

.
.
.

��S�output�node

softmax

Hidden layer Output layer

wi−1

vi−2

vi−1

vi−1

f

PRNN(wi|wi−1, vi−2)

Figure 1: An example RNNLM with an additional input feature
vector f .

An example RNNLM architecture with an unclustered, full
output layer is shown in Figure 1. Without the feature vec-
tor f in the input layer, a standard RNNLM is constructed.
RNNLMs can be trained using an extended form of the stan-
dard back propagation algorithm, back propagation through
time (BPTT) [16], where the error is propagated through re-
current connections back for a specific number of time steps,
for example, 4 or 5 [2]. This allows RNNLMs to keep infor-
mation for several time steps in the hidden layer. To reduce the
computational cost, a shortlist [17, 18] based output layer vo-
cabulary limited to the most frequent words can be used. To re-
duce the bias to in-shortlist words during RNNLM training and
improve robustness, an additional node is added at the output
layer to model the probability mass of out-of-shortlist (OOS)
words [19, 20, 21]. RNNLMs can be trained efficiently on
GPUs using the spliced sentence bunch technique [22, 23, 24].

Informative features could be incorporated into the training
of RNNLMs for adaptation purpose. In Figure 1, feature vector
f is appended to the input layer. It will be fed into hidden layer
and output layer1 as in [25].

In state-of-the-art ASR systems, RNNLMs are often lin-
early interpolated with n-gram LMs to obtain both a good con-
text coverage and strong generalisation [1, 3, 17, 18, 19, 20].
The interpolated LM probability is given by

P (wi|hi) = λPNG(wi|hi) + (1− λ)PRNN(wi|hi) (1)

where λ is the weight of the n-gram LM PNG(·), and is kept
fixed at 0.5 in this paper. In the above interpolation, the proba-
bility mass of OOS words assigned by the RNNLM component
is re-distributed with equal probabilities among all OOS words.

1According to our experimental results, the direct connection be-
tween input (block f ) and output layer is crucial when the hidden layer
size is small (e.g. < 50). When the size of hidden layer becomes large
(e.g. > 100), there is no difference between using and not using the
direct connection. In this paper, the direct connection is used.

3. Feature Based RNNLM Adaptation

In this paper, feature based RNNLM adaptation performed at
either the show or genre level is studied and compared.

As text data often contains a mix of different broad genres,
RNNLMs can be refined by making use of the genre informa-
tion. The first and most straightforward way is to further train or
fine-tune a well-trained genre-independent RNNLM on genre-
specific data to construct genre-dependent RNNLMs. At test
time, for each show, the genre-specific RNNLM is applied ac-
cording to the show’s genre label. The potential drawbacks of
this method are that multiple RNNLMs for each genre needs to
be stored and sufficient data for each genre must be obtained
for good genre-specific performance. An alternative approach
to constructing genre dependent RNNLMs is to incorporate the
genre label into the training of the RNNLM. The genre label
could simply be represented as a 1-of-k encoding feature vector
in the input layer as shown in Figure 1.

In many applications, the genre label is not known and
could be difficult to estimate. Furthermore, the genre label is
normally a coarse representation of the types of topic that might
be used. Hence, a more refined representation is preferred to
automatically derive a topic representation for each show (i.e.
document). This show-level topic representation f , will be con-
catenated with the standard input layer for RNNLM training and
testing as shown in Figure 1.

4. Learning Topic Representations

Various topic models have been proposed for topic representa-
tion of documents, including probabilistic latent semantic anal-
ysis, latent Dirichlet allocation and hierarchical Dirichlet pro-
cesses. Both PLSA and LDA use a fixed number of latent top-
ics. In contrast, HDP is able to estimate the posterior of the
number of topics during training.

Let D = {d1, ..., dN} denote the training corpus,
W = {w1, ..., wM} is all words in the vocabulary, T =
{z1, ..., zK} is the set of latent topics, and n(di, wj) is the
word count wj appearing in document di. For each docu-
ment di, a vector of posterior probabilities among topics f =
{P (z1|di), ...P (zk|di), ...P (zK |di)} is derived from the spec-

ified topic model M̂T , where each topic has a multinomial dis-
tribution over the given vocabulary.

When incorporating the feature f into RNNLM training as
shown in Figure 1, a Bayesian interpretation of the RNNLM
probability for word wi in a document d′ is given by

Prnn(wi|hi,D, d′) =

∫∫

Prnn(wi|hi, f)P (f |MT , d
′)

P (MT |D)dfdMT (2)

where P (f |MT , d
′) is the topic posterior of d′ given a model

MT trained on corpus D. The exact computation of the above
integral is intractable in general. Hence, approximations are
required to make it feasible. For topic model MT , a MAP esti-
mate is instead used

M̂T = argmax
MT

P (MT |D) = argmax
MT

P (D|MT ) (3)

when a uniform prior P (MT ) is used. When a further approx-

imation is made, P (f |M̂T , d
′) ≈ δ(f − f̂

M̂T ,d′), the topic

posterior f̂
M̂T ,d′ can be obtained by maximising P (d′|M̂T ).

Hence, the process in Equation (2) is be simplified as,

• maximum likelihood estimation of M̂T as in Eqn. (3);
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I HTK 3.5 for building DNN-based hybrid + tandem
acoustic models: used in joint decoding framework

I DNN-based audio segmenter
I RNNLMs and RNNLM adaptation
I Adaptation of DNN based acoustic models including

parameterised activation function adaptation
I Alternative acoustic models built using Kaldi
I Combined HTK & Kaldi models (same LMs)
I Systems had lowest error rates on MGB evaluation

data
I Results from updated Kaldi systems included:

further reduce error rate of combined systems

MGB Data

I 7 weeks BBC TV data: 1600h raw audio + subtitles
I Distributed v1 lightly supervised output with Phone

Matched Error Rate (PMER)
I 700h-v1 used initially for HTK systems
I Entire audio reprocessed (see alignment poster)
I Lower PMER same quantity: 700h-v2 selection
I Subtitles as transcripts (changed seg boundaries)
I 650 MW subtitles for LM training + 10 MW

transcripts

Two tasks:
I Task1: Standard Transcription
I Task3: Longitudinal Trans. (deadline 1 week later!)

Dev/eval sets:
I Task1: dev.full 28h; eval.std 11h
I Task 3: dev.long 12h/5 series; eval.long 14h/2

series

N-Gram Language Models

I Initial experiments with 64k vocab pruned 4-gram
I 0.8% abs lower OOV rate with 160k vocab
I 1% abs lower WER with large 160k model

Vocab dev.full
AM LM Size %OOV PPlex %WER

700hr-v1 LM1prune 64k 1.2 108.7 25.9
hybrid LM1 103.1 25.6

700hr-v1 LM2prune 160k 0.4 114.4 25.3
hybrid LM2 108.6 24.9

Table 1: Baseline 4-gram LMs on dev.full using 700hr-v1 based
hybrid acoustic models and manual segmentation.

700h-v1 systems

I DNN hybrid systems: 720 ⇥ 10006 ⇥ 9500 sigmoid
I 39-d Bottleneck features (ReLU DNN) for Tandem
I Tandem systems share same decision tree
I State-level log-likelihood combination

I single decode (joint-decoding)

System Criterion %WER
SI Hybrid CE 28.4
SI Hybrid MPE 25.9

SI Tandem MPE 27.0
Joint: Tandem ⌦ Hybrid MPE 24.6

Table 2: % WER on dev.full. LM1prune, manual segmentation

I Joint decoding: 1.3% abs over MPE hybrid

RNNLMs and RNNLM Topic Adaptation

I 64k vocabulary, either 512/1024 recurrent layer
I Adaptation via auxiliary real input features (added

to binary 1-of-k encoding of current word)
I Latent Dirichlet allocation: 30-d topic vectors
I Used in RNNLM training & after 1st-pass decoding

dev.full
AM LM PPlex %WER

LM1 103.1 25.6
700hr-v1 LM1+RNN512 93.0 25.0

MPE hybrid LM1+RNN512.lda 85.1 24.7
LM1+RNN1024.lda 81.0 24.4

700hr-v1 LM2 108.6 24.9
MPE hybrid LM2+RNN1024.lda 85.7 23.7
Table 3: 700h-v1 MPE hybrid acoustic models, manual segments

I Topic adapted RNNLM: 1.2% abs lower WER

HTK-based 700h-v2 systems

I 700h-v2 sys 0.4%-0.7% lower WER than 700h-v1
I Hybrid systems with 1k hidden, 9.5k outputs
I Hybrid systems with 2k hidden 12k outputs
I CMLLR SAT Tandem system
I Stacked ReLU system (adapted PLP & BN features)

Automatic Segmentation

I 4% abs increase in WER with baseline segmenter
I DNN speech/non-speech with wide (55 frame) input
I Change-point detection/clustering applied
I Still 2.1% higher than manual segmentation!

Kaldi Systems

I Kaldi 500h-v1 data used in actual eval (LSTM 250h)
I Since updated using 700h-v2 data for all models
I DNN: 700h-v1: 6 hidden⇥1024 (sigmoid) 10.5k o/p

700h-v2: 6 hidden⇥1024 (sigmoid) 11.5k o/p
I CNN: 700h-v1: Frequency-based 1-d CNN. 2 conv.

hidden & 4 DNN hidden (1024); 9k outputs
700h-v2: 11.5k outputs

I LSTM: 700h-v1: 2 LSTM hidden layers (512 cells),
200 unit projection layer. 9k outputs.
700h-v2: 2 LSTM hidden layers (1024 cells), 512
projection; 11.5k outputs

I Input: Filterbank + pitch + � + �� (43x3 per frame)
I RBM pre-training + fine-tuning + sequence training

500h/250h-v1 WER 700h-v2 WER
system system

CNN (K00) 26.4 CNN (K10) 25.4
DNN (K01) 27.7 DNN (K11) 26.4
LSTM (K03) 31.1 LSTM (K12) 26.8

K00:K01 26.0 K10:K11 24.9
K00:K01:K03 25.7 K10:K11:K12 23.7

Table 4: WER (%) for the Kaldi CNN, DNN and LSTM systems &
MBR combination represented by ":" (Auto segmentation, LM2).

I CNN best single system
I LSTM gives good combination gains (esp 700h-v2)
I 700h-v2 models reduce combined WER by 2% abs
I Lattice regen can improve WER slightly (500h-v1)

DNN Activation FunctionAdaptation

I Based on parameterised p�ReLU activation fns
I Scales slope of activation functions
I Adaptation at sequence level (CE criterion)
I Adaptation applied layer-by-layer
I Applied to stacked hybrid system

Input Transform p�ReLU Adaptation %WER
CMLLR None 25.9
CMLLR Bottom Layer 25.5
CMLLR Bottom 3 Layers 25.0
CMLLR Bottom 5 Layers 24.8

Table 5: %WER of 700h-v2 SA stacked hybrid system on dev.full.
Automatic seg, 160k LM2prune

I p�ReLU adaptation gives a further 1.1% absolute
WER reduction over CMLLR

Systems for the initial Task 1 evaluation

ID System LM dev.full eval.std
H00 9.5k 700h-v1 SI RNN512.lda 25.0 26.0
H04 Joint 12k 700-v2 RNN1024.lda 23.5 24.1

K00:K01:K03 LM2 25.7 26.7
H04+K00:K01:K03 — 23.0 23.7

H06 p-RELU adapt RNN1024.lda 23.9 —
H04 � H06 RNN1024.lda 22.4 22.8

Table 6: Systems for the initial Task 1 evaluation.

I System H00 used for adaptation of further systems.
I H04: joint system of tandem SAT + SI hybrid models
I combination: � conf net; ’+’ ROVER; & ’:’ Kaldi MBR.
I 23.7% Cambridge official eval.std Task 1 WER
I 22.8% combining H04 and H06 (p-ReLU adapt)

Improved Results Task 1 & Kaldi Updates

ID System dev.full eval.std
H10 9.5k SI 23.9 —
H11 Joint 12k 23.3 —
H12 p-ReLU adapt 23.7 —

H11�H12 22.3 —
H13 joint 9.5k ivec 23.4 —
K07 250h-v1 LSTM 31.2 —
K08 500h-v1 CNN regen 25.5 —
K09 500h-v1 DNN regen 26.6 —

K08�K09�K07 25.0 —
H11�H12�K08 21.8 —

H11�H12�H13�K08�K09�K07 21.7 22.1
K10R 700h-v2 CNN 24.6 —
K11R 700h-v2 DNN 25.6 —
K12R 700h-v2 LSTM 25.7 —

K10R�K11R�K12R 23.3 24.1
H11�H12�K10R 21.6 22.2

H11�H12�K10R�K12R 21.1 21.7
Table 7: WER (%) on dev.full , and a subset eval.std

I All HTK-based systems trained on 700h-v2.
I System H10 used for adaptation of further systems.
I H11 is a joint system using tandem SAT & SI hybrid
I All systems: LM2+RNN1024.lda, CN decoding/CNC

H11�H12�H13�K08�K09�K07
I primary for Task 3: 19.7% / 19.3% on dev/eval.long
I 1.6% abs lower on eval.std than Task 1 primary.

Updated Kaldi Systems in best combination
I Lower WER dev.full / eval.std: 0.6% / 0.4% abs

NST Final Meeting, June 28-29 2016, Edinburgh E-Mail: {pcw,xl207,yq236,cz277,mjfg,pk407,pkl27,lw519}@eng.cam.ac.uk Websites: http://mi.eng.cam.ac.uk/ http://htk.eng.cam.ac.uk/



RNNLM Adaptation
(Sheffield)
• RNNLM hybrid adaptation

•  Latent topics used as auxiliary features in the input layer  
• Linear Hidden Network (LHN) adaptation based on the genre 

labels

10

Poster session – S. Deena:  Combining Feature and Model-Based  Adaptation of 
RNNLMs for Multi-Genre Broadcast Speech Recognition

Task 1: Transcription highlights

• RNNLM hybrid adaptation
� Latent topics used as auxiliary features in the input layer
� Linear Hidden Network (LHN) adaptation based on the genre labels

WER
n–gram 30.1%
RNNLM 29.2%

LDA features 28.7%
Genre LHN 28.9%
Hybrid 28.6%

• Poster session – S. Deena: “Combining Feature and Model-Based
Adaptation of RNNLMs for Multi-Genre Broadcast Speech
Recognition”, Interspeech 2016.

3 of 7



Sheffield Transcription

•  Automatic speech segmentation with a DNN–HMM system 

• Decoding with a DNN–HMM system with PLP–bMMI features 

• Re–segmentation using the output of decoding

• Automatic clustering using BIC and PLP features

• Decoding with 3 separate systems (4-gram LMs)

• 2 DNN-HMM systems (one with adapted features) and one adapted 
Tandem GMM-HMM with DNN-derived features

• System combination with ROVER

• Poster session – O.Saz: The 2015 Sheffield System for Transcription of 
Multi–Genre Broadcast Media

11



Acoustic  Domain Adaptation
(Sheffield)
• DNN acoustic domain adaptation

• Acoustic domains are inferred from training data using Latent  

Dirichlet Allocation (LDA)

• An auxiliary vector with domain weights is used for adaptation 
for each segment 

12

Task 1: Transcription highlights

• DNN acoustic domain adaptation
� Acoustic domains are inferred from training data using Latent

Dirichlet Allocation
� An auxiliary vector with domain weights is used for adaptation for

each segment

WER
Baseline 33.3%
SAT 31.4%
LDaT 30.6%

LDaT+SAT 28.9%

• Oral session – M. Doulaty et al.:“Latent Dirichlet Allocation Based
Organisation of Broadcast Media Archives for Deep Neural
Network Adaptation”, ASRU 2015

2 of 7
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Cambridge Alignment 
• Uses system to generate training data alignments

• Lightly supervised decoding using hybrid models

• Modified due to no initial time-stamp information

• Finally time align words using Tandem model

• Maximise precision using confidence-based filtering of output + 
comparing word times between aligned script & lightly supervised 
outputs (B1 primary, B4 modified version using complete conf-net)

13

The Development of the Cambridge University Alignment Systems
for the Multi-Genre Broadcast Challenge

P. Lanchantin, M.J.F. Gales, P.Karanasou, X.Liu, Y.Qian, L.Wang, P.C. Woodland, C.Zhang
Cambridge University Engineering Department (CUED)

Summary
• Describe alignment systems both for data preparation for

participants in Multi-Genre Broadcast (MGB) challenge and
Cambridge system in transcription & alignment tasks

• Lightly supervised approach used for refining the original
transcripts provided to participants;

• Multiple refinements were used to improve the performance of
the baseline system for the MGB challenge alignment task.

Preparation of Distributed MGB Data

• Audio: 1600h of broadcast audio provided by BBC with subtitles.

• Di�erent genres: advice, childrens,comedy, competition, docu-
mentary, drama,events, news;

• broad range of environments and speaking styles.
• training set: 2193 episodes (1,580h), dev. set: 47 episodes (28h)

• Transcripts: closed captions for hearing impaired; quality vary
across genres in terms of precision of the alignment and reliability.

Segmenter

Tokenised 
original

transcripts
Biased 

LM

AM Decoding Decoded 
transcripts

Split points 
detection

Audio

Piecewise
Alignment

• Segmenter: baseline segmenter from Cambridge RT-04 system
• Lightly supervised (LS) decoding week-based biased LM +

Tandem-SAT system trained on a 200h subset;
• Detection of split points original and decoded transcripts are

compared to detect split points. The text/audio segments ob-
tained are then force-aligned;

• Segment merging: if same speaker and segment inter-silence
duration Æ 200ms + maximum duration Æ 30s per segment;

• Measures for data selection: Average Word Duration (AWD);
Phone and Word Matched Error Rate (PMER and WMER) and
Confidence scores (CS) computed for each segment.

Second Iteration of Alignment Process

As part of our participation in the MGB transcription task, performed
another iteration (v2) of alignment process.

Various components of pipeline improved relative to v1 alignment:
• Stronger bias for the LM (episode instead of week-based);
• DNN-based segmenter;
• Better Acoustic Models trained on v1 transcript used:
• H200.v1: SI seq.-trained hybrid system based on a 200h selection;
• H700.v1: SI seq.-trained hybrid system based on a 700h selection.

System LM segmenter %WER(del/ins)
T200 week biased base-seg 35.0(16.9/4.5)
H200.v1 week biased base-seg 29.1(16.4/3.3)
H200.v1 episode biased base-seg 26.9(16.2/3.1)
H200.v1 episode biased DNN-seg.v1 23.1(10.7/3.4)
H700.v1 episode biased DNN-seg.v1 22.1(9.3/4.0)

Comparison with the v1 alignment:
• lower PMER for a 700h selection (30% vs 40%)
• more data with PMER=0%;
• di�erent distribution across genre;
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New improved components derived from v2 alignment:
• DNN speech/non-speech segmenter (DNN.seg-v2)

• trained on 209h of speech data with a PMER=0% using v2 tran-
scripts, and background data

• SI sequence-trained DNN hybrid (H700.v2) system
• SI Tandem (T700.v2) system

• Both trained on a 700h selection with PMERÆ30%.

MGB Alignment Task

• Participants supplied audio and script without time-stamps
• Task is find the precise start and end time of each word in the audio;
• Words could be removed from the original provided transcript but not

added (script-constrained):
• Assessment of alignment quality was based on the Precision (P ),

Recall (R) and F -measure.

P = Nmatch
Nhyp

, R = Nmatch
Nref

, F = 2 ◊ P ◊ R

P + R
(1)

Script 
(no t.s.)

Reference

System 
output

Text Alignment 
(Nref)

Text Alignment 
(Nhyp)

Matching 
100 ms window

(Nmatch)
Scoring
(P, R, F)

In our approach, we first aimed at maximising the Recall and then
applied selection schemes in order to increase the precision and the
target F -measure value:

Maximisation of Recall

system F Precision Recall Nhyp Nmatch
A1 0.8847 0.8577 0.9134 155,951 133,761
A2 0.8974 0.8594 0.9389 159,990 137,503

A1: alignment system used for production of v2 refined transcripts
A2: alignment system maximising the recall on the development set:
• DNN speech/non-speech segmenter (DNN.seg-v2) used;
• Lightly supervised decoding using the H700.v2 hybrid model and

force-alignment using the T700.v2 tandem model;
• Split point detection was modified according to task requirements (no

time stamps and linebreak provided).

Maximisation of Precision and F -measure

Precision and F -measure were maximised by applying di�erent selection
schemes to the aligned transcripts

Piecewise
Alignment

Data
Selection

system F Precision Recall Nhyp Nmatch
B1 0.9120 0.9283 0.8936 141,404 131,260
B4 0.9160 0.9311 0.9013 141,754 131,991

B1: submitted primary system
• comparison of the aligned script with the LS decoded transcripts
• filter out of deletions, substitution with CSÆ0.90 and matching

words with �t>250ms

B4: submited contrastive system maximising F -measure
• filter out words in aligned transcripts not appearing in confidence

network (CN) from LS decoding and matching words with �t>1s.

Conclusions
• Multiple refinements, including audio segmentation based

on deep neural networks (DNNs) and use of DNN-based
acoustic models used to improve performance over baseline sys-
tem that was used for preparation of MGB challenge data;

• Multiple iterations of alignment process useful for improve-
ment of both the segmenter and acoustic models.

• For the alignment task, first aimed at maximising the recall
and then improved the F -measure value by using di�erent se-
lection schemes based on confidence scores and on compar-
ison of aligned words with the lightly supervised decoded
transcript.

• Our system participated in the MGB challenge and achieved the
highest F -measure value on the MGB evaluation set.

Poster session – The Development of the Cambridge University Alignment Systems for the 
Multi-Genre Broadcast Challenge 



Alignment System (Sheffield)

• Automatic speech segmentation, clustering and decoding 
with the Task 1 system 

•  Interpolating background n–gram with subtitles n–gram for 
each show 

•  DTW alignment of decoding output to show subtitles 

•  Word–level time stamps using Viterbi forced alignment 

14



Alignment highlights 
(Sheffield)
• Selection of interpolation weights in lightly supervised decoding 

•  Segments in a show are better covered by subtitles than others 
• SVM is used to estimate best interpolation weight per segment

• Improves WER, but not F–measure  

15
Poster session – B. Khaliq et al.: Segmentwise language model interpolation for 
lightly supervised alignment of broadcast ubtitles 

Task 2: Alignment highlights

• Selection of interpolation weights in lightly supervised decoding
� Segments in a show are better covered by subtitles than others
� SVM is used to estimate best interpolation weight per segment
� Improves WER, but not F–measure

Subtitle text

LM adaptation
(wgt 0.0)

LM adaptation
(wgt 0.5)

LM adaptation
(wgt 1.0)

ASR decoding
(wgt 0.0)

ASR decoding
(wgt 0.5)

ASR decoding
(wgt 1.0)

Alignment
features

SVM classifier
(wgt 0.0)

SVM classifier
(wgt 0.5)

SVM classifier
(wgt 1.0)

Interpolation weight prediction

WER F
Baseline 23.9% 0.8593

Segmentwise 22.7% 0.8590
Oracle 21.1% 0.8611

• Poster session – B. Khaliq et al.: “Segmentwise language model
interpolation for lightly supervised alignment of broadcast
subtitles”5 of 7



Edinburgh/Quorate 
Alignment System

• Uses a factor automaton (or transducer) to apply strong text 
constraints during decoding limiting each utterance to substrings of 
the reference text (one per show in first pass).

• Much improved decoding accuracy in difficult acoustic conditions

• search space is highly constrained → more efficient decoding

• robust to insertions (words spoken but not in script) but not deletion 
(words in script but not spoken) – both are common in this data 

• Second pass WFSTs are generated dynamically per utterance by 
selecting surrounding text, and word skips are allowed, giving 
robustness to deletions

16



Edinburgh Alignment (ctd)

• Results show good performance 

• Importance of adding second pass to boost recall

• Further details in poster.

17
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A system for automatic alignment of broadcast media captions
using weighted finite-state transducers

Peter Bell, Mark Sinclair, Pawel Swietojanski and Steve Renals
Centre for Speech Technology Research, University of Edinburgh, UK

This work

•We describe our system for Task 2 of the MGB Challenge – the
automatic alignment of human-generated captions for broadcast media

•The task is challenging due to the highly diverse, noisy content of the
audio, and because the subtitles are often not a verbatim representation
of the actual words spoken, due to paraphrasing, deletions and the need
for concise subtitling

•We use a two-pass approach with constrained weighted finite state trans-
ducers

•This approach leads to good F-score results, despite our relatively poor
acoustic models

Lightly-supervised alignment

Background

•A standard approach to lightly supervised alignment (eg. [3]) is to decode
the audio with a biased LM, then apply a text alignment of the output to
the reference text

•An alternative is to use a factor automaton (or transducer) [1] – apply
much stronger text constraints during decoding by limiting each utterance
to substrings of the reference text

–much improved decoding accuracy in difficult acoustic conditions
– search space is highly constrained → more efficient decoding
– robust to insertions (words spoken but not in text) but not deletions
(words in text but not spoken) – both are common in this data

he loves your PICTURES SO MUCH    he thinks YOU'RE GONNA  do INCREDIBLY well in milan

he loves your ******** ** PICTURE he thinks ****** YOU'LL do ********** well in milan

Example human-generated captions (above) compared with
verbatim transcription (below)

Our system

•We apply a two-pass factor transducer approach.

• In the first pass, a single grammar transducer, G, is generated for each
show.

• In the second pass, WFSTs are generated dynamically per utterance by
selecting surrounding text, and word skips are allowed, similar to [2], giving
robustness to deletions

• Important to set appropriate penalty for word skips to avoid excessive word
removal

Decode
whole show FT

Decode
utterance-specific FT

with word skips

Text alignment
to captions Resegment

The 2-pass alignment factor transducer (FT) alignment pipeline

0

1

HELLO:HELLO/0.9

#0:<eps>/0.1

#0:<eps> 2

#0:<eps>

3#0:<eps>

4

#0:<eps>

5

#0:<eps>

6

#0:<eps>

AND:AND/0.9

#0:<eps>/0.1 WELCOME:WELCOME/0.9

#0:<eps>/0.1
TO:TO/0.9

#0:<eps>/0.1 THE:THE/0.9

#0:<eps>/0.1 BOOK:BOOK/0.9

#0:<eps>/0.1 7
QUIZ:QUIZ/0.9

#0:<eps>/0.1

Factor transducer with optional skips, prior to determinisation. The
#0 symbols map to a short-pause (tee) model

Acoustic models

•Models trained on 640 hours from the MGB Challenge training set, corre-
sponding to utterance selection with an MER ceiling of 40%

•Per-show CMN and CVN; no speaker adaptation

•DNNs with 9 frames of input context, 6 hidden layers, and 2048 units per
layer, 28k output states

•Cross-entropy training followed by MBR sequence training

• Initial DNN (DNN1) used to regenerate frame alignments, used to train a
second DNN (DNN2) from scratch

•Also trained CNN model, used only for transcription task

•Because no ground truth speech/non-speech segmentation of training data
is available, short-pause models will inevitably include significant amounts
of speech

System Base Seg CU Seg

DNN1 31.5 30.6
DNN2 30.8 29.4
CNN 30.5 29.0
ROVER 29.3 27.7

Transcription (Task 1) results on the MGB Challenge development
set for various AMs, using a 4-gram LM

Results

System Precision Recall F-score

Preliminary DNN AMs
Pass 1 FT 0.8816 0.7629 0.8180
+ force align 0.8290 0.7855 0.8066
Pass 2 FT+del 0.8679 0.8563 0.8620
Final DNN AMs
Pass 1 0.9009 0.8128 0.8546
Pass 2 FT+del 0.8856 0.9013 0.8934

Pass 2(b) FT 0.8896 0.8946 0.8921
Pass 2(b) FT+del 0.8928 0.9002 0.8965

Results on the MGB Challenge development set

•Results shown use a skip probability of 0.001. The F-score is not sensitive
to this value

•System shown in italics was our final submission, which gave an F-score of
0.8773 on the evaluation set, placing it second out of six entries to this
task

•Further improvements came from modifications to the utterance-specific
text selection for the second pass

Conclusions

•The algorithm is simple to apply and reasonably robust when speech data
is challenging, or when the captions are not well-matched to the text

•Real-time factors for decoding with the factor transducers are substantially
lower than when using a biased n-gram LM, depending on the acoustic
model used (see paper for details)

•Static composition of the G transducer with the H, C and L transduc-
ers is not efficient in the second pass – future work will use a dynamic
composition

References
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[2] T. Hazen, “Automatic alignment and error correction of human generated
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A system for automatic alignment of broadcast media captions
using weighted finite-state transducers

Peter Bell, Mark Sinclair, Pawel Swietojanski and Steve Renals
Centre for Speech Technology Research, University of Edinburgh, UK

This work

•We describe our system for Task 2 of the MGB Challenge – the
automatic alignment of human-generated captions for broadcast media

•The task is challenging due to the highly diverse, noisy content of the
audio, and because the subtitles are often not a verbatim representation
of the actual words spoken, due to paraphrasing, deletions and the need
for concise subtitling

•We use a two-pass approach with constrained weighted finite state trans-
ducers

•This approach leads to good F-score results, despite our relatively poor
acoustic models

Lightly-supervised alignment

Background

•A standard approach to lightly supervised alignment (eg. [3]) is to decode
the audio with a biased LM, then apply a text alignment of the output to
the reference text

•An alternative is to use a factor automaton (or transducer) [1] – apply
much stronger text constraints during decoding by limiting each utterance
to substrings of the reference text

–much improved decoding accuracy in difficult acoustic conditions
– search space is highly constrained → more efficient decoding
– robust to insertions (words spoken but not in text) but not deletions
(words in text but not spoken) – both are common in this data

he loves your PICTURES SO MUCH    he thinks YOU'RE GONNA  do INCREDIBLY well in milan

he loves your ******** ** PICTURE he thinks ****** YOU'LL do ********** well in milan

Example human-generated captions (above) compared with
verbatim transcription (below)

Our system

•We apply a two-pass factor transducer approach.

• In the first pass, a single grammar transducer, G, is generated for each
show.

• In the second pass, WFSTs are generated dynamically per utterance by
selecting surrounding text, and word skips are allowed, similar to [2], giving
robustness to deletions

• Important to set appropriate penalty for word skips to avoid excessive word
removal

Decode
whole show FT

Decode
utterance-specific FT

with word skips

Text alignment
to captions Resegment

The 2-pass alignment factor transducer (FT) alignment pipeline
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Factor transducer with optional skips, prior to determinisation. The
#0 symbols map to a short-pause (tee) model

Acoustic models

•Models trained on 640 hours from the MGB Challenge training set, corre-
sponding to utterance selection with an MER ceiling of 40%

•Per-show CMN and CVN; no speaker adaptation

•DNNs with 9 frames of input context, 6 hidden layers, and 2048 units per
layer, 28k output states

•Cross-entropy training followed by MBR sequence training

• Initial DNN (DNN1) used to regenerate frame alignments, used to train a
second DNN (DNN2) from scratch

•Also trained CNN model, used only for transcription task

•Because no ground truth speech/non-speech segmentation of training data
is available, short-pause models will inevitably include significant amounts
of speech

System Base Seg CU Seg

DNN1 31.5 30.6
DNN2 30.8 29.4
CNN 30.5 29.0
ROVER 29.3 27.7

Transcription (Task 1) results on the MGB Challenge development
set for various AMs, using a 4-gram LM

Results

System Precision Recall F-score

Preliminary DNN AMs
Pass 1 FT 0.8816 0.7629 0.8180
+ force align 0.8290 0.7855 0.8066
Pass 2 FT+del 0.8679 0.8563 0.8620
Final DNN AMs
Pass 1 0.9009 0.8128 0.8546
Pass 2 FT+del 0.8856 0.9013 0.8934

Pass 2(b) FT 0.8896 0.8946 0.8921
Pass 2(b) FT+del 0.8928 0.9002 0.8965

Results on the MGB Challenge development set

•Results shown use a skip probability of 0.001. The F-score is not sensitive
to this value

•System shown in italics was our final submission, which gave an F-score of
0.8773 on the evaluation set, placing it second out of six entries to this
task

•Further improvements came from modifications to the utterance-specific
text selection for the second pass

Conclusions

•The algorithm is simple to apply and reasonably robust when speech data
is challenging, or when the captions are not well-matched to the text

•Real-time factors for decoding with the factor transducers are substantially
lower than when using a biased n-gram LM, depending on the acoustic
model used (see paper for details)

•Static composition of the G transducer with the H, C and L transduc-
ers is not efficient in the second pass – future work will use a dynamic
composition
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Sheffield Diarization

• Automatic speech segmentation with a DNN–HMM system

• Decoding with a DNN–HMM system with PLP–bMMI features

• Re–segmentation using the output of decoding

• Fine–tuning of the speech segmentation DNN using the show data

• Re–segmentation with the fine–tuned DNN–HMM system

• Automatic clustering using BIC and MFCC features

• Fine–tuning of a speaker separation DNN using the show data

• Re–clustering using DNN–HMM speaker separation system with the fine–tuned 
DNN

• Speaker linking using BIC and PLP features

• Poster session – R. Milner et al.  The 2015 Sheffield system for longitudinal 
diarisation of broadcast media  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Diarization  Highlights
(Sheffield)
• Three–step speech segmentation leads to low segmentation error

• 2–output DNN trained to separate speech from non–speech 
using 700 hours of acoustic training dataInitial 

• Decoding output is used to filter out areas of non–speech

• The DNN is fine–tuned on the test data and speech is re–
segmented 

19

Poster session – R. Milner et al.: The 2015 Sheffield system for longitudinal 
diarisation of broadcast media

Task 4: Diarisation highlights

• Three–step speech segmentation leads to low segmentation error
� 2–output DNN trained to separate speech from non–speech using 700

hours of acoustic training data
� Initial decoding output is used to filter out areas of non–speech
� The DNN is fine–tuned on the test data and speech is re–segmented

Miss False SER
DNN–HMM 4.1% 8.5% 12.6%
+Decoding 6.7% 2.7% 9.4%

+DNN fine–tuning 4.4% 3.8% 8.2%

• Poster session – R. Milner et al.:“The 2015 She�eld system for
longitudinal diarisation of broadcast media”, ASRU 2015.

7 of 7



Cambridge Diarisation  
Approach
• Use segmenter developed for 

transcription

• Uses classic UBM-based representation 
of each cluster based on warped features

• Cross-likelihood ratio between clusters 
used as a distance measure for clustering

• Cross-episode linking applied after basic 
diarisation, and uses a complete linkage 
clustering between clusters

20

Poster session – Speaker diarisation and longitudinal linking in multi-genre 
broadcast data

Speaker diarisation and longitudinal linking in

multi-genre broadcast data

P. Karanasou, M. Gales, P. Lanchantin, X. Liu, Y. Qian, L. Wang, P. Woodland, C. Zhang
University of Cambridge

Abstract

• Multi-stage speaker diarisation system with longitudinal
linking on BBC multi-genre data

• Basic speaker diarisation system based on Cambridge
March 2005 system [Sinha, 2005]

• New DNN-based speech/non speech segmenter
• New linking stage: link speakers across episodes of same

series
• Longitudinal constraint: incremental processing of the

episodes

Diarisation pipeline

Fbank

Viterbi decoding for DNN !
speech/non speech detection

Frame level speech/non speech labels

Internal silence threshold

Inter-silence segments

Divergence-based Speaker !
Change Point Detector

Build a single Gaussian model!
for each segment

Over-segmented data

Viterbi re-segmentation!
and re-estimation

BIC-based clustering

IAC

Until convergence or max iterations

Segmentation to homogeneous blocks

Figure : Segmentation and first clustering

Speech/Non-speech detection

• Wide range of environmental conditions, various sorts of
non-speech

• DNN binary classifier: Hybrid configuration, Cross-Entropy
optimisation, 40dim fbank input features,
2200x1000x(5x200)x2

Diarisation pipeline (contd.)

Output of Segmentation Stages

Feature warping

MAP adaptation of a UBM!
from each cluster

CLR-based cluster merging

Re-estimate models!
 of merged clusters

Diarisation output

Until CLR lower than a threshold

Figure : SID clustering

• UBM: trained on 100h, 1024 mixture components of 24dim
plp feature vectors

•
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Speaker Linking

• Applied to the output of the basic diarisation system
• CLR as similarity metric between clusters (with/without

retraining phase)
• Complete and Single linkage clustering [Ghaemmaghami, 2012]

CLR transformed to a dissimilarity distance measure:
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Experimental setup

• Training data: 7 weeks of BBC TV output made available
for the MGB challenge - 493 shows and 2193 episodes

• Dev set: 19 episodes from 5 shows (12h) - Eval set: 19
episodes from 2 shows (14h)

• Di�erent DNN segmenters based on training data selection
• DNN-v1: 100h with AWD<0.7s and WMER <25.0% from lightly

supervised alignment. Intra-segment silence and short pause as
non-speech data (38h)

• DNN-{v3,v4}: Second round of alignment, 209h with
0.165s<AWD<0.66s and PMER=0.0. v3: non-speech data as before
(37h). v4: plus inter-segment non-speech data from the 209h (313h)

Diarisation results

S/NSseg InSil nSeg MS+FA DER WER
Actual Ideal

MGBbase - 13859 12.7 46.78 - 36.6
CamRT-04 - 6280 18.2 - - 34.3
DNN-v1 50 7826 8.1 38.48 11.92 27.8
DNN-v4 30 9150 7.0 37.48 9.90 27.0

DNN-v3 50 7829 7.5 39.38 11.81 27.6
Table : Comparison of di�erent segmenters on MGB Long dev set
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Missed spk(%) FA spk(%)

Figure : Miss and FA speaker rates for di�erent internal silence
thresholds on the “DNN-v1” segmenter

series DER
MS FA SpkE Total

sci-fi tv-drama 12.7 1.1 64.38 78.16
sitcom 8.2 1.1 51.90 61.15
documentary 1.9 0.2 10.82 12.90
tv-drama 6.4 1.0 16.27 23.70
sports 5.7 1.6 39.85 47.13
Overall 6.1 0.9 30.6 37.48

Table : DER scores per genre on MGB Long dev set (“DNN-v4”)

Diarisation with linking results

Link nSpk DER
NoLink Link NoLink Link

- 640 640 37.48 -
CLR 487 389 39.20 44.35
CLR-noR 533 426 38.91 43.85
CLC 599 473 37.89 42.72

SLC 455 378 46.42 51.03
Table : Longitudinal linking: MGB Long dev set (“DNN-v4”)

Series NoLinkDER LinkDER
competitive cuisine show 44.59 51.92
culture show 33.07 40.21
Overall 40.2 47.46

Table : Longitudinal linking: MGB Long eval set (“DNN-v4”)

Conclusions

• Built a diarisation system with a longitudinal linking
stage

• Conducted experiments on multi-genre BBC data
• Achieved the lowest within-episode and cross-episode

DER scores on the MGB challenge evaluation set



Conclusions

• Many systems developed for MGB as part of NST across range of NST 
tasks

• Improved segmentation  algorithms are important

• Use of subtitle data and refined alignment for training

• Various types of acoustic model, adaptation and combination

• RNNLM applied to a large scale task with adaptation

• Different approaches to the alignment task

• Diarisation and linking used different techniques between sites

• Many posters that give more details!
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