AIMS

- Create disfluent input text for a Speech Synthesis (SS) system
- Insert multiple Filled Pauses (FPs) and Discourse Markers (DMs) into fluent text using lattice-based rescoring framework
- Compare performance of Ngrams and Full-Output Recurrent Neural Network Language Models (f-RNNLMs)
- Assess performance of interpolated Ngram + f-RNNLM

DISFLUENT SPEECH SYNTHESIS

Speech disfluencies (DISs) serve important purposes in human speech:

- indicate psychological/emotional states
- structure spoken discourse
- facilitate word recall
- improve object recognition

Automatically insert FPs and DMs into fluent text:

- text input for SS systems usually fluent
- DISs must be introduced for disfluent SS
- 2 FPs and 2 DMs modelled overtly
- FPs = **UH**, **UM**
- DMs = I MEAN, YOU KNOW
- c.20M words (1M sentences) of training data: – Switchboard, Fisher, and AMI
- these 4 DISs occurred most frequently in the training data

	#occs [%]
YOU KNOW	278,423 [1.4%]
UH	213,924 [1.1%]
UM	200,500 [1.0%]
I MEAN	73,719 [0.4%]

- **UH**, **UM**, and **YOU KNOW** occur comparably frequently (c.1% of all tokens in training data)
- **I MEAN** less frequent, so harder to model well
- DIS-insertion system built using training data
- it automatically inserts these 4 DISs into otherwise fluent texts

An example:

• I NEVER LIKED GAMES \rightarrow I MEAN I NEVER LIKED UH GAMES

Inserting Filled Pauses and Discourse Markers for Disfluent Speech Synthesis

M. Tomalin, R. Dall, M. Wester, X. Liu, B. Byrne, & S. King Cambridge University Engineering Department, CSTR The University of Edinburgh {mt126, xl207, wjb31}@eng.cam.ac.uk, {r.dall@sms, mwester@inf, Simon.King@}.ed.ac.uk

THE DIS-INSERTION SYSTEM

The models used:

- Ngrams and f-RNNLMs built using training data
- f-RNNLM LMs:
- have strong generalization performance
- -facilitate efficient training parallisation in Graphics Processing Unit (GPU) framework
- improve WERs in speech recognition systems

The lattice-based framework:

- robust lattice-rescoring framework used
- initial lattices created
- each DIS accessible from each word token

- initial lattices expanded using Ngram (6g)
- lattices rescored using f-RNNLM, and Ngram + f-RNNLM
- *n*-best output for each sentence S generated (where n = 10000)
- for fluent S with q tokens, n-best varies from q to $(q \times 2) + 1$ tokens
- 1-best for each *p*-token *S* selected using Ngram

Controlling the degree of disfluency:

- Disfluency Parameter (DP) set:
- $-0 \leq DP \leq 1$
- -[0,1] divided between 1-best outputs for all p
- determines degree of disfluency in output

DP Output Sentence

- |0.00| Well I GUESS THEY WERE SAYING
- 0.25 WELL I GUESS THEY WERE SAYING UM
- 0.50 UM WELL I MEAN I GUESS THEY WERE SAYING UM
- 0.75 UM WELL I MEAN I GUESS YOU KNOW THEY WERE SAYING UM
- 1.00 UM WELL I MEAN I GUESS YOU KNOW THEY UH WERE YOU KNOW SAYING UM
- the higher the DP value the more disfluent the speaker
- final 1-best disfluent output generated for specified DP

DIS-INSERTION RESULTS AND ANALYSIS

Dev and Test datasets defined:

- Dev and Test sets derived from same corpora as training data:
- -Dev = 5,310 sentences (126k words)
- -Test = 7,632 sentences (180K words)

Experiments and metrics:

- lattices rescored using Ngram, f-RNNLM, and Ngram + f-RNNLM
- component Ngram + f-RNNLM LMs had 50% / 50% weighting
- performance assessed using Precision, Recall, and F-score metrics

- metric scores for Dev data determined DP value used (0.5)
- inverse relationship between Precision and Recall/F-score

Comparison of the DIS-insertion systems:

	Precision		Recall		F-score	
	(Dev	v/Test)	(Dev/Test)		(Dev/Test)	
Ngram	0.43	0.42	0.53	0.56	0.47	0.48
f-RNNLM	0.45	0.46	0.50	0.53	0.47	0.49
Ngram + f-RNNLM	0.45	0.45	0.52	0.54	0.48	0.49

- Ngram higher Recall than f-RNNLM; f-RNNLM higher Precision
- Ngram + f-RNNLM has complimentary properties of component LMs

Analysis for DIS subtypes:

- DIS-subtypes have different occs in Dev/Test ref/hyp data
- Dev/Test ref/hyp files compared for Ngram + f-RNNLM system

	Dev occs re	f/hyp [%]	Test occs ref/hyp [%]			
UH	3667 [2.9%]	2662 [2.1%]	3658 [2.0%]	3339 [1.8%]		
UM	3338 [2.6%]	3301 [2.6%]	3391 [1.9%]	4078 [2.2%]		
I MEAN	436 [0.3%]	598 [0.5%]	1239 [0.7%]	983 [0.5%]		
YOU KNOW	1997 [1.6%]	4141 [3.2%]	4525 [2.5%]	7457 [4.1%]		

- Ngram + f-RNNLM inserts **UH**, **UM**, and **I MEAN** proportionately
- Ngram + f-RNNLM overinserts **YOU KNOW** (1.6% abs)

Results for DIS subtypes:

	Precision (Dev/Test)		Recall (Dev/Test)		F-score	
					(Dev/Test)	
UH	0.55	0.43	0.42	0.41	0.48	0.42
UM	0.58	0.43	0.53	0.51	0.55	0.47
I MEAN	0.11	0.23	0.16	0.16	0.13	0.21
YOU KNOW	0.35	0.50	0.76	0.80	0.48	0.62

- considerable DIS-specific variation
- Precision for FPs relatively stable; Recall varies up to 0.10% abs
- Precision for **YOU KNOW** varies by 0.15% abs
- Recall for **YOU KNOW** relatively stable
- metric scores for **I MEAN** lower than for the other DISs

CONCLUSIONS

- A burgeoning interest in emotional / expressive SS
- Ngram + f-RNNLM most robust of DIS-insertion systems compared
- Explore other DIS modelling techniques
- Develop text processing for other disfluency subtypes (e.g., repetitions, restarts)
- Develop disfluent SS system that uses voices with different emotional states and personality types

