Natural Speech Technology Edinburgh – Cambridge – Sheffield

Personalisation of VOCAs

- facilitate social interaction
- provision of personalised voice is associated with greater dignity and improved selfidentity for the individual and their family

Voice Banking

- process of capturing the voice before it starts to degrade
- requires large amount of recorded intelligible speech
- problematic for patients who's voice has already started to deteriorate
- strong motivation to reduce complexity and to increase the flexibility of the voice building process

The Multiple-AVM framework

hybrid approach between the AVM and the CAT framework

Cluster Adaptive Training (CAT [Gales00])

- the adapted mean vector of a component is interpolated in an eigenspace spanned by the cluster mean vectors
- vs MAVM: clusters are AVMs which can be tuned towards the target before interpolation

Average Voice-based speech synthesis([Yamagishi12])

- AVM can be trained independently
- vs MAVM: decision tree intersection allows a wide variety of possible contexts to be produced

Estimated interpolation weights

- the range of weights assigned to duration and f_0 streams reveals the atypical characteristics of these patient's voice components;
- characteristics have been reproduced during the interpolation despite having only a small degree of freedom

Table 1:	Estimated	interpolation	weights f	for each	model	sti

AVM.tgt	mcep	lf_0	dlf_0	$ddlf_0$	bap	d1	d2	d3	d4	d5
Sco.378	1.39e-1	2.68e+4	1.83e+5	-7.94e+4	4.57e-1	1.26e+5	-2.06e+5	-4.24e+4	-7.53e+4	-3.54e+4
Eng.378	1.42e-1	4.84e+2	-2.10e+2	-1.31e+4	1.15e-1	-4.10e+3	1.07e+5	5.14e+4	7.33e+3	3.47e+4
Sco.573	5.91e-1	-2.32e+4	-1.55e+5	-9.11e+4	3.22e-1	-6.59e+4	-1.47e+5	-1.20e+4	7.80e+4	3.95e+4
Eng.573	-5.54e-2	4.47e+2	-2.54e+4	-3.69e+3	1.14e-1	-4.98e+2	-1.74e+5	-1.62e+5	-2.43e+5	-1.29e+4
Sco.044	8.97e-2	-1.73e+4	-2.07e+5	3.99e+4	-5.71e-2	4.62e+4	-7.35e+4	9.30e+4	1.31e+4	3.55e+2
Eng.044	-2.31e-3	4.34e+3	-7.77e+4	-1.77e+5	3.41e-2	4.10e+4	2.13e+5	1.66e+5	2.46e+4	-3.32e+4
Sco.185	4.76e-2	2.13e+4	2.56e+5	1.65e+5	2.03e-1	-1.01e+5	4.24e+5	-1.84e+4	2.52e+4	-7.37e+3
Eng.185	-1.94e-2	-8.35e+4	1.14e+5	1.07e+6	-1.41e-1	-4.39e+4	-1.17e+5	-8.84e+4	1.51e+5	2.93e+3

Reconstructing Voices within the Multiple-AVM framework

P. Lanchantin[†], C. Veaux^{*}, M.J.F. Gales[†], S. King^{*}, J. Yamagishi^{*}

[†]Cambridge University Engineering Department ,Cambridge, UK *Centre for Speech Technology Research, Edinburgh, UK

_ _ _ _ _ _ _

Secondary AVM

adaptation

Mean vector

extraction

each AVM is trained separately on data selected according to a specific factor (age, gender, regional accent, ...)

- during adaptation each AVM is adapted towards a speaker close to the target (or to the target itself) before interpolation \rightarrow design of the space in which the interpolation takes place depending on the application.

How does the Multiple-AVM approach perform in the voice reconstruction task?

ream.

Listening tests

Similarity

- healthy version of the voice was unavailable
- reference: AVM directly adapted towards the patient voice
- 10-points scale MOS, 30 randomly chosen pairs

Intelligibility

- transcription test
- 20 utterances played just once

Naturalness

- AB comparison test
- asked to judge which sample sounds more natural

Voice reconstruction in the MAVM framework

Advantages of MAVM framework regarding the Voice Reconstruction task

flexibility

- interpolation eigenspace can be designed using different combination of AVM/target voices
- interpolation weights can be fine-tuned by a practician

complexity

• only a small amount of data is required to estimate the weights interpolation vector

Experiments

- Reconstruction of a patient voice with mild dysarthia (Female, with Glasgow accent)
- 2 British accent AVMs: English (106 speakers), Scottish (181 speakers)
- Selection of 4 closest speakers
- pre-selection of 21 female voices with glasgow accent aged 23 to 68 years
- adaptation of the scottish AVM towards each of these 21 voices
- selection of the 4 closest (p378, p573, p044, p185) according to likelihood given the patient data
- the 2 AVMs were adapted to each of the 4 selected speakers leading to 8 adapted AVMs

Listening Test (38 listeners)

- comparison of 4 reconstructions of the patient's voice in terms of similarity, intelligibility and naturalness
- *closest* voice: Scottish AVM adapted towards the closest p378
- *interp* voice: the proposed approach
- *interp_sub* voice: substitution of f0, dlf0, ddlf0, dur by closest ones
- *tailored* voice: manually reconstructed by speech therapist

Figure 2: Results of the similarity test (top) and of the intelligibility test (bottom).

Conclusion

- the Multiple-AVM framework is well-suited to the reconstruction task
- requires small amount of patient's data
- can be fine tuned by a speech practician interpolation in clean voice eigenspace
- structed by a practician but further evaluation is required for similarity.

• interpolation can be done in a clean space by selecting healthy target voices close to the disordered one

Table 2: Naturalness evaluation, (95% error margin=5.73).

А	pref A	pref B	В
tailored	39.38	60.62	interp_sub
tailored	83.56	16.44	interp
tailored	35.62	64.38	closest
interp_sub	94.86	5.14	interp
interp	14.04	85.96	closest
interp_sub	53.42	46.58	closest

evaluations show improvement in naturalness and intelligibility compared to a voice recon-